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A new method for selecting marker variables in factor analysis is introduced, called the Marker In-
dex. The Marker Index evaluates the usefulness of a variable in representing a factor by weighting both 
primary and secondary loadings, and by maximizing the similarity between the marker and the underly-
ing factor. The method is compared with other four methods of selections, based on factor loadings or 
factor weights. Theoretical and empirical comparisons of the performance of the different methods are 
performed and the advantages of the Marker Index are illustrated. The comparisons demonstrate that 
the use of the Marker Index as a selection method can improve factorial simplicity, scale validity, and 
reliability of the composite scales composed by variables selected as markers. 
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INTRODUCTION 

 

Factor analysis is one of the most-commonly used statistical methods in psychology. Us-

ers of factor analysis often face the problem of dividing the initial set of variables into subsets. A 

typical situation is selecting those variables that provide the best interpretation (naming) of the 

retained factors, or discarding the variables that do not contribute to any of the retained factors. 

Another very common case is the construction of concise sub-scales, by reducing a large number 

of variables to the best pool of variables available. In both cases the fundamental question is 

quantifying the usefulness of variables in a given factorial solution. The search for the best vari-

ables in a factor solution is the problem of the selection of the marker variables.  

Most textbooks on factor analysis and test construction give only vague suggestions 

(e.g., Comrey & Lee, 1992, pp. 241-244; Dillon & Goldstein, 1984, pp. 69-70; Gorsuch, 1974, p. 

238; Guilford, 1954, pp. 522-523; Horst, 1965, pp. 554-558; Kline, 1993, p. 140; Rummel, 1970, 

pp. 472-489; Tabachnick & Fidell, 1996, pp. 639-640), or ignore the issue (e.g., Crocker & 

Algina, 1986; Fabrigar, Wegener, MacCallum, & Strahan, 1999; Harman, 1976; Loehlin, 1987; 

Nunnally, 1978; Stevens, 1996). The most common suggestion is simply to consider the primary 

loading, perhaps excluding those variables with high secondary loadings. For instance, Horst 

(1965) suggested to “…select variables with the highest loadings in each of the factors. Pre-

sumably, we do not select any variables which have high loadings in more than one factor” (p. 
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557). As a consequence of this lack of adequate formal methods to assess the usefulness of vari-

ables, most practitioners simply rely on more or less idiosyncratic rules-of-thumbs.  

In the present contribution we propose a new method for selection of marker variables. 

The new method, called the Marker Index, is derived from the geometrical properties of the fac-

torial solution, such that the variables that are selected as markers are the ones that more closely 

resemble the underlying factor. We compare the new method with other methods, both analyti-

cally and empirically, and show its advantages. We show that variables selected with the Marker 

Index simultaneously satisfy the most important criteria that define good factorial solutions, 

namely simplicity, representativeness, and scale reliability. 
 

 

MARKER VARIABLES 

 

Marker variables are those variables that better represent the factor, conveying the mean-

ing of the underlying dimension without being contaminated by other unrelated factors (cf. Cat-

tell, 1978). To satisfy those requirements, marker variables should have two distinct fundamental 

properties: representativeness and simplicity. Representativeness means that the variables con-

vey the same concepts and are valid indicators of the underlying dimensions (cf. Cattell, 1978). 

Thus, marker variables should be highly related to the factor they are measuring. Simplicity 

means that marker variables contribute to the achievement of structural simplicity (cf. Harman, 

1976). A simple structure is achieved when variables have very low secondary loadings, which 

implies that each variable is related only to one factor.  

These two concepts have natural counterparts in the domain of scale construction. When 

constructing a scale to measure a latent factor, one should select those variables that mostly re-

semble the factor. Cattell and Tsujioka (1964) define this property as scale validity, meaning that 

a scale is highly correlated with the underlying factor. In addition to scale validity, marker vari-

ables should not simultaneously measure other constructs. Cattell and Tsujioka (1964) define 

this property as factor trueness. From a scale construction point of view, factor trueness is the 

counterpart of factorial simplicity, whereas scale validity is the counterpart of representative-

ness. The best marker variables should therefore be those variables that produce an optimal com-

promise between the two criteria. The problem becomes how to select such marker variables. 
 

 

MARKER INDEX 

 

We propose a method based on an index of factorial simplicity, called Marker Index. For 

an intuitive understanding of the rationale behind the Marker Index, consider the two-

dimensional factorial space in Figure 1.  

A variable i can be plotted in the factorial space as a point with coordinates represented 

by its loadings on Factor 1 and on Factor 2. It is clear that a perfect marker variable is a variable 

with co-ordinates (1,0). Lying perfectly on the factor, in fact, this variable is the simplest vari-

able of the solution, represents perfectly the factor, has the highest possible validity, and its vec-

tor is the closest possible vector to the factor axis. Thus, the perfect marker lies on the vertex of 

the factor (point f in Figure 1). As a variable departs from this location, it loses either in simplic-

ity or in representativeness, or both. Therefore, the distance between a variable and the vertex of 
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the factor captures the discrepancy between the actual position of the variable and the ideal posi-

tion: the smaller is the distance, the better is the variable as a marker. In other words, the useful-

ness of a variable i can be uniquely identified by the distance between the variable and the point 

f , with coordinates (1,0), which is the point representing the best possible variable for the fac-

tor (Figure 1). 
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FIGURE 1 

Geometrical representation of the Marker Index. 

 

 

Generalizing to a K-dimensional space and reversing the sign for simplicity, we define 

the Marker Index for a variable i  on a factor k  as the complement of the Euclidean distance be-

tween the variable represented by point ia  with coordinates )a,..,a,a( iKii 21  and the vertex of the 

kth factor, represented by the point kf  with the kth element equal to 1 and all the other coordi-

nates equal to zero.  
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The Marker index can be used both on standardized or raw variables (i.e., factor analysis 

on a correlation or covariance matrix). However, in this latter case, the standardized solution 

should be used to compute it.  
 

 

Properties of the Marker Index as a Criterion 

 

The index shows several properties that are described analytically in Appendix B, 

whereas in Appendix C a SAS routine is reported for ease of implementation. We can highlight 

intuitively these properties with the aid of Figure 2, where different variables are represented in a 

two-factor solution for simplicity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2 

Geometrical representation of the Marker Index for variables with different properties. 

 

 

First, the Marker Index is perfect ( 1=iMI ) if and only if the variable coincides with the 

factor (point f in Figure 2) and has the minimum ( 21−=iMI ) when the variable coincides 

with a different factor (point e in Figure 2). Second, the index captures the simplicity of the vari-

ables. When two variables have equal primary factor loadings, the one with the lower secondary 

loading is preferred. In Figure 2, for instance, points q and b have the same primary loading, but 

q has a higher Marker Index since it has a lower secondary loading. Third, the index depends on 
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the representativeness of the variables. When two variables have the same secondary loadings, 

the variable with the highest primary loading is preferred. In Figure 2, points q and i have the 

same secondary loading, but i has a higher Marker Index since it has a higher primary loading. 

Fourth, the index is a trade-off between simplicity and representativeness. Different combina-

tions of primary and secondary loadings can produce the same Marker Index. These values are 

all points of the semi-circle whose ray-vector is a given Marker Index value (points d and l in 

Figure 2; see also below). Finally, for the sake of comparison with other methods, we note that 

the Marker Index distinguishes between two variables that are maximally simple by preferring 

the variable with the highest primary loading (points d and c in Figure 2). Moreover, the index 

distinguishes between variables with equal angular distances to the factor axis (variables b and g 

in Figure 2), achieving higher values for variables with higher communalities (point l over q and 

point g over b in Figure 2).  

Summing up, the Marker Index weights and achieves an optimal compromise between 

the two main properties of variables (and of the resulting factorial structure): simplicity and rep-

resentativeness. Since the Marker Index accounts for the absolute value of the primary loadings 

of the variables as well as for the ratio between the primary and the secondary loadings, the se-

lected variables are both representative of the factors and factorially simple and, consequently, 

generate valid and reliable scales. 

 

 

Interpretation of the Marker Index 

 

We briefly give an interpretation of the feasible values of the Marker Index. First, note 

that the index ranges from 1 to 21− . When it is positive, it has a straightforward interpreta-

tion: given a variable iwith vMI ik = , this variable is as good as a variable i′  with a primary 
factor loading equal to v  and the secondary factor loadings all equal to zero. This means that if i 

shows a higher Marker Index than i′ , i is either more representative or simpler. This property 
can be seen in Figure 2, where variable l and d have the same Marker Index. Variable l is less 

simple than d, but it is more representative of the factor. Finally, when 0<ikMI , the variable is 

less representative and less simple than a variable with 0=ia . Second, note that for each vari-

able there are as many Marker Indices as factors. However, only the highest of them should be 

considered, since an interpretation of its values is meaningful only by reference to the primary 

loading of each variable.  

To illustrate representative values of the Marker Index for different combinations of pri-

mary and secondary loadings, we reported a three-dimensional solution in Table 1 (for simplic-

ity, we report only the Marker Index for the first factor).  

Variable V1 is a good marker for Factor 1. MI11 is .68. This value is obtained, according 

to Equation 1, as ( ) 222
06107011 ... ++−− . Variable V2 shows the same primary loading but 

it is related also to the other two factors. This lack of simplicity decreases MI12, which goes to 

.42 ( ( ) 222
35357011 ... ++−− ). In terms of the Marker Index, V2 is considered as good as V3, 

a very simple variable with a medium size loading. Compared with V3, variable V4 shows a lower 

MI14 since the primary loading has a medium size and the secondary factor loadings are higher. 

V3 would be ranked even better than V6, which shows a higher factor loading but also higher 
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secondary loadings. Variable V5 has a negative secondary loading that does not affect the Marker 

Index ( ( ) ( ) ( )222

51 10106011 ...MI −++−−= ). Variable V7 has high primary loading but the 

variable loads both on the first and the second factor, lacking in factorial simplicity, and there-

fore the Marker Index is low ( ( ) ( ) ( )222

71 01707011 ...MI ++−−= ). Finally, variable V8 shows 

a negative Marker Index because it does not belong to the first factor 

( ) ( ) ( ) 061110702111
222

81 ....MI −=++−−= . Indeed, V8 is a good marker of the second fac-

tor ( ) ( ) ( ) 6238110701211 222

82 ..)...MI =−=+−+−= . 

 

  TABLE 1 

Illustrative values of Marker Index for a three-dimensional solution  

 

 a1 a2 a3 h
2
 MIi1 

V1 .70 .10 .06 .50 .68 

V2 .70 .35 .35 .74 .42 

V3 .42 .01 .01 .18 .42 

V4 .40 .31 .22 .30 .29 

V5 .60 .10 –.10 .38 .58 

V6 .60 .50 .40 .77 .25 

V7 .70 .70 .01 .98 .24 

V8 .21 .70 .10 .54 –.06 

+ote. For simplicity the Marker Index is computed only for the first factor. 

 

 

To give a practical cut-off, we suggest the value .40 as a minimal value for the Marker 

Index. This guarantees keeping variables as useful as a perfectly simple variable with a primary 

loading of .40, one of the commonly used cut-off for the primary factor loadings. Applying this 

criterion to Table 1, one would select V1 V2 V3 and V5, that indeed are variables showing good 

factorial properties. 

 

 

Practical Use of the Marker Index 

 

Given its geometrical simplicity, the Marker Index can be used to select marker variables 

even by practitioners who feel uncomfortable with statistical computations. In two-factor solu-

tions, in fact, there is not even the need to undertake any calculation to select a set of maker vari-

ables. It suffices to obtain the factor loadings plot (as in Figure 3) and draw two circles of the 

preferred length centered on the factor vertexes. All the variables that lie within the circles are 

marker variables (given the length chosen as a threshold), and all the variables that are outside 

the circles are not. For solutions with more than two factors, the same procedure can be repeated 

on all bidimensional plots, considering a variable as marker of one factor when it lies in all the 

circles centered on that factor’s vertexes. If the aim is to select a given number (e.g., the best 10) 
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of markers for each factor rather than whatever variable is above a certain threshold value, one 

can proceed by drawing larger circles until the required number of markers are selected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3 

Practical selection of marker variables without calculations. 

 

 

Generalization to Oblique Solutions 

 

The Marker Index can be easily adopted also when the extracted factors are obliquely ro-

tated with a promax or oblimin rotation. Oblique rotations do not change any of the properties of 

the Marker Index, because the definition of a marker variable does not depend on the correlation 

between factors. When factors are correlated, in fact, the point with co-ordinates (1,0) still repre-

sents the ideal marker, and therefore the distance between the actual and the ideal position of the 

variable is still the best index of representativeness and simplicity. When factors are correlated, 

however, the distance between the variable and the vertex of the factor should be computed us-

ing the generalized Euclidean distance, which takes into the account the correlation among fac-

tors (Appendix A describes in detail the computation of the Marker Index for oblique solutions). 

The Marker Index can be computed using both the primary factor pattern matrix or the reference 

factor structure, depending on the specific applications and on theoretical considerations. In 
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general, researchers should compute the Marker Index in oblique solutions using the matrix they 

would normally use for selecting the variables (typically the pattern matrix).  

 

 

ALTERNATIVE SELECTION METHODS 

 

In the following sections we discuss existing alternative methods of marker selections, 

based either on factor loadings or on factor weights, in order to compare them to the Marker In-

dex. The methods are: 1) a method based on the primary factor loadings (PL); 2) a method based 

on the ratio between the primary and the secondary loadings, that is the angular distance between 

the variables and the factors (AD); 3) a method based on the primary factor weights (PW); 4) a 

method based on the Varimax rotated factor weights (RW; Ten Berge & Knol, 1985). 

Each method of selection has the following structure. We start from a pool of variables, 

which in most applications represent the items of a questionnaire or the set of all the measures 

available to the researcher. A factor analysis is carried out on these variables, and a (usually ro-

tated) factor solution with K factors is retained. A method of marker selection identifies, for each 

factor k, a small number of variables according to some criterion of usefulness. Each method 

thus implies two decisions, one about the usefulness and the other about the number of variables 

to be selected. 

The two main sources of information regarding the usefulness of the variables with re-

spect to the factors are factor loadings and factor weights. Therefore, the four methods that we 

discuss are either a function of the factor loadings or the factor weights. Because a criterion of 

usefulness indicates how good a variable is in measuring a factor, the criterion is also used to as-

sign variables to the factor. 

As regards the number of variables to be selected, there are two different approaches. 

One can define a fixed number (m) of variables to be selected for each factor and keep the best m 

variables. Alternatively, one can define a minimal threshold of the criterion such that only the 

variables showing a criterion larger than the threshold are retained. In this contribution we do not 

discuss this issue any further, because both strategies equally benefit from a selection criterion 

that selects the best variables.  

 

Method 1: Primary Factor Loading 

 

The most-commonly used method to evaluate and to select variables is based on the pri-

mary factor loading, that is, on selecting the variables with the highest (absolute) loadings on a 

factor. In looking for the best markers of a factorial solution, authors often select, for each factor, 

the m variables with the highest factor loadings (cf. Goldberg, 1992). In scale construction, items 

are often evaluated in terms of their primary factor loadings. In fact, if we select variables with 

loadings higher than .30 (or sometimes .40), we are dealing with the Little Jiffy method for scale 

construction (Kaiser, 1974; Nunnally, 1978). 

We can now focus on the properties of the set of the selected variables. The method is 

particularly suited to maximize the representativeness of the variables, but it does not guarantee 

a simple structure. In fact, the method does not consider the secondary loadings and therefore 

does not discriminate among complex and simple variables. This drawback also implies a weak-
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ness in the domain of scale construction. Since the selected variables for a factor may correlate 

with other factors (due to high secondary loadings), the resulting scale may not correspond to the 

original factor. The consequence is that scale validity and factor-trueness of the scale will be low 

(cf. Cattell, 1978; Ten Berge & Knol, 1985). 

Summing up, the method is expected to be efficient in selecting representative variables, 

but deficient in respect to criteria, such as factorial simplicity, scale validity and independence, 

that are affected by the presence of high secondary loadings. 

 
 

Method 2: Loading Ratio 
 

To overcome the problems associated with the previous method, Fürntratt (1969) pro-

posed an approach based on the ratio among primary loading and communality 







2

2

i

i

h

a
. The basic 

idea is that a marker variable should be factorially simple, that is it should ideally load only on 

one factor. The simplicity of a variable can therefore be indicated by the relative amount of vari-

ance in a variable ( )2ia  exclusive to the factor where the variable has the highest loading as 

compared to the total variance (or communality) in the reproduced factorial space ( )2ih . The 

value ranges between 0 (the variance of a variable does not belong to a given factor) and 1 (all 

the variance belongs to a given factor). This index is equivalent to the square of the angular dis-

tance. Namely, the distance, in radians or degrees, between a variable and a factor. This method 

is also (empirically) equivalent to Kaiser’s index of factorial simplicity, which also considers the 

ratio among the primary loadings and the communality of a variable. Since all those methods are 

almost equivalent and are all meant to maximize the simplicity of the selected variables, in the 

following sections we refer only to the angular distance.  

This method relies on the notion that, representing each variable as a vector in the facto-

rial space, the closer the variable vector is to the factor axis, the simplest, and thus the better, is 

the variable. In Figure 2, for instance, variables q and l show the same angular distance. Consid-

ering the angular distance, variable q should be considered as good as variable l, even though it 

is intuitively evident that l is a better marker than q. The same reasoning applies for variables b 

and g. (cf. Figure 2).    

The angular distance is computed as follows: 

2

2

ik

ik

ik
h

a
AD =  (2) 

This method positively solves the problem outlined for the method of primary factor 

loading, because when two variables have the same primary loadings, the method prefers the one 

with lower secondary loadings and, for equal secondary factor loadings, the method prefers the 

one with higher primary loading. On the other hand, the ratio between the loadings does not con-

sider the absolute value of the primary loading. Thus, this method is inefficient in selecting vari-

ables highly representative of the factor. For example, in a two-dimensional factorial solution 

two variables will have the same angular distance if they show, for instance, loadings as 

( )1070,..i =a  and ( )1177,..j =a , but also when the loadings are ( )0214,..*

i =a and ( )1177,..*

j =a . 

Obviously, no user of factor analysis would say that the latter two variables are equivalently 
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good. Comparing this method with the method of primary factor loading, it appears that what one 

gains in factorial simplicity and scale validity is lost in the representation of the factors.2 

When the variables are selected in order to obtain scales as an estimation of the corre-

sponding factors, all methods based on factor loadings suffer from a general criticism. In fact, it 

has been pointed out by Ten Berge and Knol (1985) that factor loadings do not represent the 

contribution of the variables in forming the factor. Hence, their use to evaluate their contribution 

in forming the factor has no strict theoretical (and mathematical) justification. The proper pa-

rameter upon which to base a selection criterion should be the factor weights, representing the 

contribution of a variable in forming a factor. We can describe two methods of selection based 

on factor weights. The two methods apply the logic of two procedures proposed in the literature 

for constructing scales (cf. Gorsuch, 1974; Ten Berge & Knol, 1985). 

 

 

Method 3: Primary Factor Weight 

 

The first method is simply the method of primary factor loading substituting the factor 

loadings with the factor weights. The use of the absolute factor weights guarantees that the vari-

ables will produce scales with high scale validity (Ten Berge & Knol, 1985). Furthermore, since 

the factor weights increase with increasing correlations between variables and factors, the 

method will select variables that are representative of the factors. However, this method does not 

guarantee factor-homogeneity, since it is insensitive to secondary loadings. 

 

 

Method 4: Rotated Primary Factor Weight 

 

To overcome the latter problem, the method can be modified with the following rationale 

(cf. Ten Berge & Knol, 1985). In selecting variables contributing to only one factor, it is desir-

able to have variables with the simplest possible weights. Therefore, it would be better to con-

sider the weights resulting from a rotation of W  to obtain a simple structure (cf. Harris, 1975). 

To sum up, the selection criterion should be based on the weights W , resulting by the Varimax 

rotation of the weights W . This modified approach does not suffer of particular deficiencies 

from a logical point of view.  

 

 

EMPIRICAL COMPARISON AMONG METHODS 

 

In the previous analyses we have shown the formal properties of the Marker Index as 

compared with other methods of selection. We have argued that in several conditions, the 

Marker Index maximizes the accuracy of the selection as it is sensitive to many relevant charac-

teristics of the variables that other methods fail to consider. In this section we test these predic-

tions by comparing the performance of the five methods in selecting marker variables. With this 

aim, we conducted a series of empirical studies. We tested the performance of the methods on a 

series of generated data sets, formed by normal random variables generated from a factorial 

model. The model allows us to control the characteristics of the data sets and to vary systemati-

cally the parameters of the model (e.g., number of cases, variables, factors). For the sake of com-
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parability with other methods of selection, we focus on orthogonal solutions as obtained with 

Varimax rotation, which represents the most-commonly used rotation method in psychology.  

 

 

Empirical Criteria 

 

The following criteria have been chosen to reflect desirable properties both of the facto-

rial solution and of the scales resulting by summing the selected variables for each factor.  

1. Factor representativeness. As a measure of factor representativeness we used the per-

centage of explained variance for each factor. In fact, the more the selected variables are repre-

sentative of the factor, the higher the variance shared by the variables and the factor. 

2. Factorial simplicity. As a measure of factorial simplicity, we used the Index of Fit for 

Factor Scale (IFFS) proposed by Fleming (1985). The index is particularly suited to measure the 

simplicity of sets of variables conceived of as scales of the factors. The index is computed as the 

ratio between the mean squared loadings on one factor of the variables of interest and the mean  

squared loadings of the same variables on the other factors. When the variables are maximally 

simple the index is equal to 1, whereas when they are maximally complex the index is equal to 

.5. If the index is zero the scale variables do not measure the factor they are expected to measure 

(Fleming, 1985).  

3. Scale consistency. As a measure of internal consistency we used Cronbach’s alpha co-

efficient. 

4. Scale validity. As a measure of scale validity, we used the correlation between the 

scales obtained adding the variables selected according to the assignment criterion and the factor 

scores (cf. Ten Berge & Knol, 1985).  

5. Scale independence. As a measure of factor independence we used the determinant of 

the correlation matrix among scales. Since the extracted factors are orthogonally rotated, the less 

the scales correlate, the more they measure the factors properly. The determinant gives an overall 

compact value of orthogonality. It is equal to 1 if the scales are perfectly orthogonal, and it is 

equal to zero if the scales are perfectly correlated.  

 

 

Data Generation 

 

We constructed a series of data sets following the factorial model described in Kiers 

(1997). Specifically, let the rn ×  matrix Y be the artificial sample (the data set) of n cases and r 

variables to be generated. Let k be the number of components decided a priori to underlie the 

data structure, the kn ×  matrix F be the matrix with k normally distributed variates representing 

the factor scores, P be the kr ×  pattern matrix, and E be the rn ×  matrix of normally distributed 

unique terms of the variables. Then, EFP'Y += . 

This method allows us to control, besides the other parameters of the data sets, the spe-

cific relationships between the variables and the underlying factors. In order to simulate data 

structures where the underlying dimensions are known, but the assignment and the quality of the 

variables with respect of the dimensions are not unique, the a priori factor loadings (the pattern 

matrix P) are generated according to a uniform distribution, ranging from –1 to 1. Thus, each 

column of the pattern matrix is a uniform distribution, independently of the other columns. Be-
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cause the loadings are uniform, each factor has average loadings of .5 (in absolute value). Be-

cause the loadings of one variable on different factors are independent, this method produces 

factor structures with variables that vary both in simplicity and representativeness.  

As far as the parameters of the generated data are concerned, we conducted the study 

varying the following experimental variables: 1) number of factors k, with k = 2,4,6,8,10,12; 2) 

number of variables for each factor (r/k): 15,20; 3) number of cases n, with n = 500, 1000; 4) 

number of markers to be selected (m): 4,8. 

 

 

Procedure 

 

For each set of variables produced, we obtained an orthogonal Varimax rotated factor so-

lution of k factors from the r variables. All the solutions have been obtained using principal com-

ponent analysis. We also replicated the results varying the factor method (i.e., minimal residual 

and maximum likelihood factor analysis), without significant differences in the results. We se-

lected a set of m variables for each method of selection. For each selected set we performed a 

new factor analysis and evaluated the criteria. To minimize the risk of random effects, we repli-

cated the analysis with 10 repetitions for each combination of experimental variables. 

The experiment is therefore based upon 480 generated data sets, obtained as follows: six 

(number of factors) X 2 (number of variables) X 2 (number of cases) X 2 (number of markers) X 

10 (repetitions). 

 

 

RESULTS 

 

The factorial method and number of cases did not influence remarkably the relative per-

formance of the methods, thus we aggregated the results across these variations. Although our 

main aim was to investigate the overall performance of the methods in producing good sets of 

markers, first we comment briefly on the performance of the methods for each criterion across 

different parameters. 

 

 

Success Criteria 

 

1. Factor representativeness. As shown in Table 2, the set of variables selected using PL 

and PW explains the highest percentage of variance. This confirms empirically our argument 

about the efficiency of this method in maximizing the representativeness of the variables.  

2. Factorial simplicity (IFFS). As expected, the AD performs better than all other meth-

ods. Interestingly, the MI’s performance is the second best, better than other methods that are not 

explicitly designed to maximize this criterion. This shows that MI efficiently takes into account 

the simplicity of the variables. 

3. Scale consistency. Concerning reliability obtained adding the selected variables, the 

best method is PL, with MI and the methods based on the factor weight performing well. 

Whereas AD shows a poor performance.  
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  TABLE 2 

Success criteria for the five selection methods 

 

Selection  

method 
# studies Representat. Simplicity Reliability Validity Independence 

MI 480 37.6 .944 .607 .760 .953 

  (5.9) (.032) (.068) (.057) (.042) 

PL 480 37.7 .940 .608 .759 .950 

  (6.0) (.035) (.068) (.057) (.044) 

AD 480 35.9 .949 .579 .750 .961 

  (5.5) (.033) (.079) (.056) (.036) 

PW 480 37.7 .940 .607 .759 .952 

  (5.9) (.034) (.068) (.057) (.043) 

RW 480 37.6 .941 .606 .759 .953 

  (5.9) (.034) (.068) (.057) (.042) 

+ote. Representativeness = % of explained variance; Simplicity = Index of Fit for Factor Scale; Reliability = Cronbach alpha; Valid-

ity = average correlations between factor scores and corresponding scales; Independence = determinant of the correlation matrix 

among scales; MI = Marker Index; PL= Primary Loadings; AD= Angular Distance; PW = Primary Factor Weight; RW= Rotated Pri-

mary Factor Weight. Standard deviations are in parentheses. 

 

 

4. Scale validity. The MI performs better than all the other indexes. As expected, MI 

guarantees the selection of variables with high representativeness and high simplicity. Since 

these two properties constitute the basic ingredients of validity, their achievement is mirrored in 

the empirical results.  

5. Scale independence. AD performs better than the other methods. This result is consis-

tent with the logic underlying this method, namely the maximization of the simplicity of the so-

lution.  

The overall results indicated that different methods lead to the maximization of a spe-

cific criterion. However, the average performance tends to hide differences among methods be-

cause possible discrepancies in the performances of the methods for specific combinations of the 

experimental parameters can be compensated by the performance in other combinations. Fur-

thermore, users of factor analysis rarely aim for a unique criterion, as we extensively argued. 

They wish to have the best compromise between the simple and the representative structure. 

Moreover, once they have selected a set of variables using a given criterion, they may be more 

interested in the properties of the factorial structures or in the properties of the resulting scales. 

We analyzed the average performance of each method considering these two aspects, the number 

of extracted factors, and the proportion of variables selected as markers, since both appeared to 

be relevant sources of variation in the success criteria.  

With this aim, we standardized each success criterion over the 480 outcomes resulting 

from the 48 combinations. To minimize the impact of the performance of the methods for some 

specific combinations of parameters, we standardized the data within each of the major experi-

mental variables. This allows us to evaluate the overall performances unbiased with respect to 

the overall variability not due to the methods.3 To simplify the detailed discussion of the empiri-

cal performance of the methods, we considered the results from two perspectives, the quality of 

the factorial structure of the quality of the resulting scales. We will call the first structural good- 
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ness, and the second scale goodness. Structural goodness results from adding the standardized 

score relative to the percentage of explained variance and the IFFS, whereas scale goodness re-

sults by adding the standardized alpha, scale validity, and scale independence. We also consid-

ered the overall performance, by calculating the average of the two aggregated criteria. Thus, 

positive values of these indices indicate comparatively high performance, and negative values 

comparatively poor performance (see Table 3). 

 

  TABLE 3 

Aggregated performance of the methods (z-scores) 

 

Selection  

method 
# studies Goodness indices 

  Structure Scale Overall 

MI 480 .214 .159 .186 

PL 480 .027 .112 .069 

AD 480 –.285 –.515 –.400 

PW 480 .032 .136 .084 

RW 480 .013 .109 .061 

+ote. Structure = Representativeness, Simplicity (sum of z-scores). Scale = Reliability, Validity and Independ-

ence (sum of z-scores). Overall = mean of structure index plus scale index. MI = Marker Index; PL = Primary 

Loadings; AD = Angular Distance; PW = Primary Factor Weight; RW = Rotated Primary Factor Weight. 

 

 

The results show that the MI performs better than all other methods, both considering the 

overall performance and considering structural goodness and scale goodness separately. As ex-

pected, the MI guarantees a good performance because it considers both the structural properties 

of the variables (simplicity and representativeness) and the pureness of the variables (and conse-

quently the validity and the trueness of the resulting scales). 

Considering the performance as a function of the number of factors (Table 4), the MI 

performs (relative to the other methods) at best with more factors, being by far the best method ac-

cording to all criteria. For each number of factors we considered, MI shows the best performance 

for structural goodness, scale goodness, and consequently for overall goodness (see also Figure 4). 

As the number of factor increases, the differences in performance do not change markedly, even 

though we observe a slight increase in the relative performance of the Marker Index as compared 

with all other methods.  

Concerning the performance as a function of the number of markers selected, we exam-

ined the relative performance of the methods for varying proportions of selected variables over 

the initial number of variables. The first experimental variable included two levels, 4 and 8 se-

lected variables, and the second experimental variable included two levels, 10 and 15 initial vari-

ables per factor. The combination of these two variables produces a new experimental variable 

that indicates the proportion of initial variables selected as markers. There were four proportions: 

.26 .53 .40, and .80. Figure 5 shows the overall performance as a function of the proportion of 

markers. The Marker Index appears to perform better than any other method across all the pro-

portions we investigated, especially when few variables are selected. As the proportion of mark-

ers increases, the relative performance of the methods becomes more similar. This effect is due 
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to the fact that, when 80% of the variables are selected as markers, the overlapping of the selec-

tions increases, because few variables are discarded, and all the methods tend to agree upon the 

exclusion of the worst variables. When only few variables are selected, the overlapping de-

creases, and thus the quality of the methods are more distinguishable. Additional analyses show 

that the same effect can be found for structural goodness and scale goodness, with MI perform-

ing better than the other methods for both criteria.  

 

  TABLE 4 

Structural, scale, and overall performance of the methods by number of factors (z-scores) 

 

Selection  

method 
# factors Goodness indices 

  Structure Scale Overall 

MI 2-4-6 .149 .148 .149 

PL 2-4-6 .022 .110 .066 

AD 2-4-6 –.234 –.505 –.370 

PW 2-4-6 .024 .125 .074 

RW 2-4-6 .039 .122 .081 

     

MI 8-10-12 .278 .170 .224 

PL 8-10-12 .032 .113 .073 

AD 8-10-12 –.337 –.525 –.431 

PW 8-10-12 .040 .146 .093 

RW 8-10-12 –.013 .096 .041 

MI = Marker Index; PL = Primary Loadings; AD = Angular Distance; PW = Primary Factor Weight; RW = Ro-

tated Primary Factor Weight. 

 

 

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10 11 12

# of factors

MI PL AD PW RW

O
v
er
al
l 
P
er
fo
rm
an
ce
 (
z-
sc
o
re
)

method
 

 

 

FIGURE 4 

Overall performance of the selection methods across different numbers of factors.  

Data for each method are standardized within experimental conditions. 
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FIGURE 5 

Overall performance of the selection methods across different proportions of selected variables 

over total number of variables. Data for each method are standardized within experimental conditions. 

 

 

Overall, the Marker Index is the undisputed winner of this empirical comparison with 

other methods for each combination of parameters we have considered. It is important to note 

that this overall superiority of the Marker Index appears in our data despite the fact that the data 

have a clear and regular structure. These regularities are likely to hide differences among meth-

ods, because, for well-defined structures, performance tends to converge. In other words, be-

cause in our data parameters such as the number of factors, correlations among factors, distribu-

tion of the variables, and distribution of loadings are precisely defined in advance, the methods 

do not suffer from weakness due to the uncertainty in these parameters. In real data, however, the 

underlying structure is rarely known in advance, and greater irregularity is to be expected in the 

distribution of the variables and of the parameters. The logical and geometrical properties of the 

Marker Index ensure that its performance would hold also when such irregularity occurs. Fur-

thermore, we have additionally performed some ancillary empirical comparisons among the se-

lection methods using real data in personality research.4 We have found again that Marker Index 

is superior to all other selection methods considered in this contribution. Remarkably, in real 

data the superiority of the Marker Index is even more pronounced that in simulated data. 

As a final remark, we wish to note that the findings we obtained are in perfect agreement 

with and follow from the theoretical analyses that we have conducted. In each data set and across 

all data sets, all the selection criteria maximize the property that we expected from the theoreti-

cal analyses. As expected, the best overall performance is observed for the Marker Index, which 

provides the best compromise among the criteria. The consistency of the findings and the type of 

data we have considered suggest that the results we have obtained are not due to the specificity 

of the data sets.  

 

 

method 
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CONCLUSIONS 

 

The Marker Index appears to be the winner of this contest. It satisfies many criteria both 

for scale construction and for structural goodness. The Marker Index shows a remarkable per-

formance for different purposes and in different conditions. The empirical strength, furthermore, 

is well supported by the logic and the rationale behind this method. We maintain that the superi-

ority of the Marker Index is not an empirical property but it is due to analytical and logical prop-

erties and therefore it is also reflected in empirical findings. In other words, due to its reliance on 

the Euclidean theorem, the Marker Index necessarily represents the best measure of the distance 

between an ideal and an actual point. This distance is the complement of how close a variable is 

to be a perfect variable for a given factor. The method is simple to implement, and it has a direct 

and intuitive interpretation. In practice, users of factor analysis are mostly looking for a com-

promise between different properties, and so far they could rely just on rules-of-thumbs and ex-

perience. The Marker Index represents a simple algorithmic solution to a very old problem.  

 

 

NOTES 

 
1. The authors’ order is alphabetical, as both authors have contributed equally. Correspondence concerning this 
manuscript can be addressed also to Marco Perugini, Facoltà di Psicologia, Università degli Studi di Milano-
Bicocca, Viale dell’Innovazione 10 (U9), 20126 MILANO (MI), Italy. E-mail: marco.perugini@unimib.it 

2. Perugini and Leone (1996) tried to overcome the logical problems of the methods discussed so far by 
proposing an index of prototypicality that combined both methods. While that index is superior to both 
primary factor loading and angular distance, it is inferior to the Marker Index and it is less elegant. For 
this reason the index of prototypicality will not be considered in this contribution. 

3. Since all methods perform better for a small number of factors, with few markers selected  and with 
more initial variables, we operated a standardization within experimental variables such that the results 
are not affected by those differences that are independent of the differences between methods. 

4. The results are not reported here both for the sake of brevity and because the data simulation approach 
that we have used in the manuscript is more precise and mathematically elegant. 
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APPENDIX A 

 

Different Formulations of the Marker Index 

 

Orthogonal solution. For computational purposes we give alternative but equivalent for-

mulations of the Marker Index . 

Matrix form:   )a(f)a(f1af ikikik −−−=−−= 'MI ik 1  

Scalar form:    ( ) k,aaMI
k

p

2

ipikik ≠+−−= ∑
=

p  11
1

2
 

Communality known:   211 2

iikik haMI +−−=  

Polar system: 

Let transform the loadings of a variable i  in a ray-vector (ρ) and an angular value (θ), 

following the formula (cf. Harman, 1976, p. 57):   2∑=ρ
k

iki a , arci =θ tan 








ρi

ika

 

  
 

The Marker Index is  iiiikMI θρ−+ρ−= cos11 2      

 

Oblique solutions. Let Φ  the Errore. �on si possono creare oggetti dalla modifica di 

codici di campo. correlation matrix among the factors. The Marker Index will be the comple-

ment of the generalized Euclidean distance between the variable i  and the point f in the oblique 

axis system (cf. Harman, 1976, p. 61): 

 

    ( )( )∑∑
= =

φ−−−=
K

v

K

p

vpvivkpipkik afafMI
1 1

1  

 

or, in vector notation   )aΦ(f)'a(f ikik −−−=1ikMI  
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APPENDIX B 

 

Marker Index Properties 

 

We now show formally some key properties of the Marker Index sketched in the main 

text, and we show how the Marker Index solves the cases where the other methods may fail. In 

the following statements, the loadings are implicitly referred to as always positive and the 

Marker Index of variable i on factor k is noted as .miik  

Properties. 

1) Range: 1=ikm  iff ki fa =  and 21−=ikm  iff pi fa = with kp ≠ . 

This statement is intuitively true.  

2) If two variables have the same primary factor loading, the variable with the lower secondary 

loading is preferred. Namely, if jkik aa = and 22

ji hh <  then jkik mimi > . 

Proof: to prove this the Marker Index just needs to be written as  

 211 2

iikik hami +−−=  (1b) 

and note that  

jkik mimi >  if jkjiki ahah 22 22 −<−  (2b) 

So, for any jkik aa =  and 22

ji hh < , it follows that jkik mimi > .  

3) Variables with equal secondary loadings: if two variables have the same secondary factor load-

ings, the variable with the highest primary loading is preferred. That is, if jkjiki ahah −=− and 

ji aa >  then jkik mimi > . 

Proof: note that  

jkik mimi >  if ( ) ( ) ∑∑
==

+−<+−
k

v

2

jvjk

k

v

2

ivik aaaa
1

2

1

2
11 with kv ≠  (3b) 

Since ∑∑
==

=
k

v

2

jv

k

v

2

iv aa
11

, then 

jkik mimi >  if ( ) ( )22
11 jkik aa −<−  (4b) 

Since 10 ≤≤ ika  hence  

jkik mimi >  if jkik aa >  (5b) 

4) Variables maximally simple: if two variables are perfectly simple, the one with the higher pri-

mary loading is preferred. That is, if jkik aa > , and iik ha = , and jjk ha = , then jkik mimi > . 

Property 4 is a sub-case of Property 3. 

5) Variables with equal angular distance: two variables with the same angular distance (with re-

spect of a given factor) are considered equal only if 11
22

−=−
j

jk

i

ik

h

a

h

a
. That is, if jkik aa ≠ , and 
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j
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i

ik

h
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= , we have jkik mimi >  if 11

22
−<−

j

jk

i

ik

h

a

h

a
, and we have jkik mimi =  if 

11
22

−=−
j

jk

i

ik

h

a

h

a
.  

Proof: we first show that a variable with 1
2

=
i

ik

h

a
 is the variable with the highest Marker 

Index among the variables with the same ratio 
i

ik

h

a
. Consider the 2-dimensional Cartesian space 

in Figure A1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE A1 

Geometrical representation of a two-factor solution. 

 

 

The segment OL  has unit length and it is separated to OF  by the angle β. All the vari-

ables lying on OL  have the same ratio )cos(β=
i

ik

h

a
. Consider now the triangle OFL. Applying 

basic geometry, we know that the shorter line connecting F with OL  is the height of the triangle, 

the segment OM orthogonal to OL . The point M is the point with the shortest distance to F 

among all the points on OL . Since OMF is a right triangle ( )o90=α , it follows that 

OMOFFM
222

−= .  

Thus, because 1=FO  and mhOM = , and FM  is the Euclidean distance to the point F 

of the variable at point M, variable M has the highest Marker Index when 
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22 121 mmkm hah −=−+   (6b) 

Which simplifies to: 

1
2

=
m

mk

h

a
  (7b) 

Consider now a variables q lying on OL , with 1
2

≠
q

qk

h

a
. Its distance from F is QF = 

222

QMFMQF += , implying that the shorter QM , the shorter QF . Because QM  is the dis-

tance between q and m , namely 1
2

−
q

qk

h

a
, the lower 1

2
−

q

qk

h

a
, the shorter will be QM . Since 

QFMI q −=1 , the lower is 1
2

−
q

qk

h

a
 the higher will be the Marker Index.  

Finally, if we take q` such that 11
22

−=−
`q

k`q

q

qk

h

a

h

a
, we have M`QQM =  and thus 

F`QQF = . Therefore, two variables i and j with 
j

jik

i

ik

h

a

h

a
= have the same Marker Index if and 

only if 
22

j

jik

i

ik

h

a

h

a
= . This concludes the proof. 
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APPENDIX C 

 

SAS Macro for Computing the Marker Index 

 

The following simple SAS macro can be used to compute the Marker Index of each vari-

able i for K factors, in orthogonal solutions. SPSS code and SAS macros for oblique solutions 

and for different strategies of selection are available from the authors on request. The macro op-

erates on the raw data dataset. It should be submitted to the SAS system before executing it.  

 

MACRO 

 
%macro makerindex(data=_last_,out=mi,var=,nfactor=2,r=v); 
/* Execute the factor analysis */ 
proc factor data=&data n=&nfactor r=&r out-
stat=l(where=(_type_="PATTERN")) ;  
var &var ; 
run; 
proc transpose data=l out=l; id _name_; run; 
 
/* Read the factor loadings and compute the marker indices */ 
data &out; 
set l; 
array Factor (&nfactor); /*array of factor loadings */  
array mi (&nfactor); /*array of marker indices for each variable */ 
communality=uss(of factor(*)); /* Communality of the variable */ 
do i=1 to &nfactor; 
mi[i]=1-sqrt(1-2*abs(Factor[i])+communality); /* Marker indices */ 
end; 
drop i; 
run; 
Title "Marker indices"; 
proc print; var communality mi1-mi&nfactor; run; 
title ; 
%mend; 

 

USAGE 

 
%makerindex(data=_last_,out=mi,var=,nfactor=2,r=v); 
 
where: 

data = the raw data dataset containing participants’ scores (default = last dataset used); 

out = the output dataset where the marker indices are stored (default = mi); 

var = variables included in the factor analysis (required parameter);   

nfacto r= number of factors to retain (default=2); 

r = type of rotation (possibly none). Accept proc factor syntax (default = varimax). 
 


