
 

 

 

 
 

 

  287 

THE RECIPROCAL RELATIONSHIP  

BETWEEN HUSBANDS AND WIVES’  

MARITAL FORGIVINGNESS:  

A TWO-WAVE CROSS-LAGGED  

LATENT DIFFERENCE SCORE ANALYSIS  

OF TEN-YEAR DATA 

F. GIORGIA PALEARI 
UNIVERSITY OF BERGAMO 

 

FRANK D. FINCHAM 
FLORIDA STATE UNIVERSITY 

Cross-lagged latent difference score (LDS) models complement cross-lagged regression models, 
but are better suited to detecting differences in intrapersonal change and examining the relation be-
tween changes in different variables across time. In this article we present cross-lagged LDS models as 
a method for conceptualizing and measuring change in two-wave dyadic data. The statistical analysis of 
these models is illustrated using data on marital forgivingness collected from 61 couples at two time 
points separated by a 10-year interval. The results support the view that cross-lagged LDS models can 
be an appropriate means to analyze within-person change over two occasions in the context of nonin-
dependent couple data. This is true even when sample size prohibits the estimation of cross-lagged 
LDS models through common factors using multiple indicators. Conditions that increase model reli-
ability in the absence of multiple indicators are described. 
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Many questions of interest to marital researchers involve longitudinal processes (Karney 

& Bradbury, 1995). For example, descriptive questions ask whether spouses/marriages change 

over time on one or more focal variables (e.g., “Does marital satisfaction decline over time?”), 

whereas explanatory questions seek to understand these changes by considering possible predic-

tors (e.g., “Do conflict management strategies anticipate declines in marital satisfaction?”) and/or 

mechanisms of change (e.g., “Does forgiveness mediate the relationship between conflict man-

agement strategies and declines in marital satisfaction?”) (Chan, 1998). In relationships such as 

marriage, it is important to identify predictors of change not only within, but also between part-

ners; one partner’s emotions, cognitions, or behaviors are likely to affect the other partner, both 

concurrently and over time. Because partners are interdependent (Kelley & Thibaut, 1978), each 

spouse’s standing on one or more focal variables can predict subsequent partner change on one or 

more related variables (e.g., “Husbands’ dissatisfaction or conflict management strategies are 
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likely to anticipate wives’ declines in satisfaction”). Also, changes in one partner can be assumed 

to be accompanied by changes in the other (e.g., “Husbands’ declines in satisfaction are likely to 

be associated with wives’ declines”).  

In order to examine issues such as those outlined above, data from both partners (dyadic 

data) are needed. The analysis of longitudinal data from married dyads is challenging because it re-

quires us to take into account at least two types of nonindependence simultaneously: autocorrelation 

and dyadic nonindependence (Kenny, Kashy, & Cook, 2006). Autocorrelation, sometimes called 

lagged correlation, refers to the association between measurements of the same variable taken at 

two different points in time; it reflects the fact that the best predictor of present behavior is past be-

havior. Autocorrelation is usually positive, suggesting a form of “stability,” a tendency for a behav-

ior to remain the same from one observation to the next. Dyadic nonindependence indicates the as-

sociation between two measurements of the same variable taken from the two members of the dyad; 

it also denotes the association between any parameter (e.g., a slope or an intercept) estimated across 

dyad members. It reflects the fact that the two members of a dyad, are more similar (or different) to 

one another than two people who are not members of the same dyad. Dyadic nonindependence is 

usually positive, reflecting similarity, but it can also be negative, indicating discrepancy. 

 

 

OVERVIEW OF CROSS-LAGGED LATENT CHANGE MODELS 

 

The goal of the present article is to present cross-lagged latent difference score (LDS) 

models. The analysis of these models is complementary to that used for cross-lagged regression 

models, and we will show that it can be used to examine two-wave dyadic data even when sam-

ples are quite small. It is not unusual to have small samples in two-wave designs involving cou-

ples, especially when they cover a long period of time and there is missing data. The problem of 

missing data is magnified when working with dyads as loss of data relating to one dyad member 

in one wave may result in all data for the dyad being unusable. 

Cross-lagged latent difference score models are an extension of cross-lagged regression 

models that incorporate elements of growth curve analysis. We therefore present these models 

and their features in relation to better-known cross-lagged regression models. Thus, we begin by 

providing a brief introduction to the analysis of two-wave dyadic data through cross-lagged re-

gression models estimated via structural equation modelling (SEM). We then consider cross-

lagged latent difference score models before showing how to use these models to investigate re-

ciprocal relationships between the tendency to forgive in husbands and wives.  

 

 

Cross-Lagged Regression Models 

 

Cross-lagged regression models are widely used in the analysis of two-wave data to in-

vestigate the direction and the strength of prospective effects between two variables, while con-

trolling for their stability. In these models, each variable is regressed on both its own lagged score 

and the lagged score of the other variable at the first measurement occasion (t1); the two variables 

and their error terms are also allowed to covary at t1 and t2, respectively. The parameters of great-

est interest in cross-lagged models are the autoregressive coefficients, that is autocorrelation of 
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each variable with its lagged measurement, and cross-lagged regression coefficients or lagged ef-

fects of each variable on the other, net of autocorrelations and covariations specified in the model. 

Conceptually, autoregressive effects denote stability of the same variable over time, whereas cross-

lagged effects reflect the degree to which a variable at t1 predicts change in the other variable 

from t1 to t2, after controlling for the stability of variables and their association at t1. Thus, if sig-

nificant cross-lagged coefficients are found for both variables, this means that each variable has 

an effect on the other over time, supporting a bidirectional or reciprocal effects model. If only 

one cross-lagged effect is statistically significant, this provides support consistent with a unidi-

rectional effect model. If neither of the cross-lagged effects are significant, the two variables can 

be inferred to be unrelated over time (Berrington, Smith, & Sturgis, 2006). 

When analyzing prospective data from dyad members, the basic structure of two-wave 

cross-lagged models is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 1 

Cross-lagged regression model for two-wave dyadic data. 

 

 

In this model, we have one variable of interest, Y, assessed at two times, t1 and t2, in two 

persons, 1 and 2, belonging to the same couple i. For example, Y might be the level of happiness 

reported by a husband and his wife, and the two times at which their happiness is evaluated might 

be two points a year apart. Thus, for each couple i we have two equations: 

ititiitiiit eYpYscY ,2,1,1,22,1,111,2,1 +++=  (1) 

ititiitiiit eYpYscY ,2,2,1,11,1,222,2,2 +++=  (2) 

and six parameters: 

s1i, which is interpreted as the stability effect of Y for person 1 (e.g., the stability of hus-

band’s happiness over one year); 

s2i, which is interpreted as the stability effect of Y for person 2 (e.g., the stability of wife’s 

happiness over one year); 

p1i, which represents partner effect from person 1 to person 2 (e.g., the effect of hus-

band’s happiness at baseline on wife’s change in happiness over one year); 

p2 

p1 
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p2i, which represents partner effect from person 2 to person 1 (e.g., the effect of wife’s 

happiness at baseline on husband’s change in happiness over one year). Overall, p1i and p2i indi-

cate cross-partner or reciprocity effects; 

c1i, which is the intercept for person 1 (e.g., the predicted value of husband’s happiness at 

t2 when both husband’s and wife’s happiness at t1 equal zero); 

c2i, which is the intercept for person 2 (e.g., the predicted value of wife’s happiness at t2 

when both husband’s and wife’s happiness at t1 equal zero).  

As Kenny et al. (2006) note, it is very important that predictor variables have a meaningful 

zero and if not they should be centered. In a temporal model involving dyadic data the variables 

must be centered by subtracting a common value from person 1’s and person 2’s data, namely the 

average of both person 1’s and person 2’s scores at t1. This makes the path coefficients comparable 

across dyad members and allows the variance of the six parameters to be meaningfully interpreted. 

In fact, each of the above six parameters may vary across dyads. For example, if s1i varies it means 

that Y is more stable for some persons 1 than for others (e.g., happiness is more stable for some 

husbands than for others); if p1 varies, it indicates that some persons 1 have greater effects on per-

sons 2 than other persons 1 (e.g., the effect of husbands’ happiness at baseline on wives’ changes in 

happiness over one year is stronger for some husbands than for others).  

As in standard two-wave cross-lagged models, each equation has a residual or error term 

(e1,t2,i and e2,t2,i) representing the effect of all other predictor variables that have not been included 

in the equation (i.e., the extent to which the Yt2 variables are not explained by either of the Yt1 

variables), plus measurement errors. Error terms are allowed to correlate to control for other sources 

of nonindependence such as family effects. The correlation between error terms tests the extent to 

which the dyad members are similar to one another at t2 (e.g., to the extent that husband’s happi-

ness at t2 is higher than would be expected on the basis of happiness experienced by husband and 

wife at t1, then his wife’s happiness would also be higher at t2 than one would expect on the same 

basis). The predictor variables (e.g., husband’s and wife’s happiness at t1) are also allowed to cor-

relate so that partner effects are estimated while controlling for stability effects and vice versa. 

Two-wave cross-lagged dyadic models are usually analyzed via SEM, which allows one 

to test differences between parameters by imposing constraints on them. This is important be-

cause it allows us to determine whether stability effects, partner effects, variances, intercepts or 

means differ for the members of the dyad. For example, one can test whether stability or actor ef-

fects vary across partners (e.g., “Is husbands’ happiness more stable than wives’ happiness?”) 

and whether partner effects vary (e.g., “Does husbands’ happiness predict their wives’ later happi-

ness more than wives’ happiness predicts husbands’ later happiness?”). If members of the dyads 

show no difference in relation to any parameters estimated, it means that partners are not empiri-

cally distinguishable with respect to the variable investigated (Kenny et al., 2006).  

The structure presented in Figure 1 can be extended to include variables other than Y (e.g., 

by assuming that Y1,t2,i and Y2,t2,i are predicted not only by Y1,t1,i and Y2,t1,i but also by another variable 

X assessed at t1 in both members of the dyad, i.e., X1,t1,i and X2,t1,i). It is also possible to model the 

same structure with latent constructs using multiple indicators instead of observed variables. 

Limitations. Cross-lagged regression models have important limitations. For example, 

they are not suitable for detecting differences in patterns of intrapersonal change or for examining 

the relation between changes in different variables across time. Do persons differ in their change 

in one domain? Is change in one domain accompanied by change in another domain? 
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Simple difference scores have been used to address the above questions. A simple differ-

ence score, sometimes called a gain score or change score, can be designated as 

ititi, YYD ,1,1,2,11 −=  

where D1,i stands for a difference score for person 1 of couple i, Y1,t1,i is the person’s observed score 

at the initial assessment, and Y1,t2,i is the same person’s observed score at the subsequent assessment. 

A number of influential scholars, however, have argued that difference scores are less reliable than 

the two scores from which they are derived, especially if the two scores are positively correlated 

(Williams & Zimmerman, 1977), as is often the case in longitudinal research because of autoregres-

sive or stability effects. The basis for this assertion may be found in the formula 
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as well as in the more recent formula 
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which takes into account the dispersion of the scores at t1 and t2 (Williams & Zimmerman, 1996). 

In these formulas rDD is the reliability of the difference score, r11 and r22 are the reliability of the 

measure at t1 and t2 respectively, r12 is the correlation between t1 and t2 scores, and SD1 and SD2 

are the standard deviations of scores at t1 and t2 (King et al., 2006). According to both formulas, 

the reliability of the difference score decreases as the correlation between its two component 

scores increases, assuming other elements are held constant.  

On the other hand, when longitudinal data are analyzed using classical approaches other 

than difference scores, for example using residual-change scores or repeated-measures ANOVA, 

restrictive assumptions must be met (e.g., sphericity of variances) and the negative effects of un-

reliability are significantly amplified (Rogosa & Willett, 1983).  

 

 

Cross-Lagged Latent Difference Score Models 

 

To overcome the problems outlined above, McArdle (2001, 2009) proposed the use of la-

tent difference score (LDS) models that have less restrictive assumptions and are less sensitive to 

issues associated with measurement error. Inspection of the above rDD formulas reveals that im-

proving the reliabilities of components of the difference score (r11 and r22), with other elements 

held constant, will improve the reliability of the difference score (rDD). Thus, LDS models first 

partition the observed scores Y1,t1,i and Y1,t2,i into true scores y1,t1,i and y1,t2,i, which are perfectly 

reliable, and measurement errors e1,t1,i and e1,t2,i , so that Y1,t1,i = y1,t1,i + e1,t1,i and Y1,t2,i = y1,t2,i + 

e1,t2,i. LDS models then define the difference between these two latent variables for person 1 of 

couple i as ∆y,1,i = y1,t2,i ‒ y1,t1,i. Stated differently, y1,t2,i is equal to y1,t1,i plus some change in y1,t1,i 

or ∆y,1,i, which is not directly measured, therefore it can be considered a latent difference score. 

To estimate independently the true score and error variance when there are only two measure-

ment occasions, constructs must be assessed by multiple indicators at each time point; in this case 

variance in each latent factor is error free and, consequently, the change in variance is also meas-

ured without error (Little, Bovairds, & Slegers, 2006; McArdle, 2009). Figure 2 shows a LDS 
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model for individual data which estimates change score across two measurement occasions by 

splitting the variance of y1,t2,i into two components: the y1,t1,i variance and the ∆y1i variance, or 

variance associated with the difference from t1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note. y1,t2,i disturbance is fixed at zero to identify model parameters as well as force the two-wave decomposition. y1,t1,i and y1,t2,i are 

measured with multiple indicators that are correlated and invariant over time (correlations are not reported for the sake of clarity). 
 

FIGURE 2 

Basic latent difference score model for two-wave individual data. 

 

 

The model includes fixed-unit-value coefficients (= 1), so that the second latent factor 

y1,t2,i is defined as the sum of y1,t1,i and ∆y,1,i. Given that the model assumes a perfect linear rela-

tionship between y1,t1,i and y1,t2,i , y1,t1,i will be related to ∆y,1,i to the extent that this relationship dif-

fers from 1. Also, the model estimates a base-free measure of change (i.e., change due to initial 

level is removed). Because the latent difference score is part of the model, the model parameters 

include the variation and mean in latent changes across individuals, that is, ∆y,1,i variance and 

mean, as well as the relation of change with the initial latent factor y1,t1,i. The ∆y,1,i mean captures 

the mean-level change and is similar to what would be estimated by repeated measures ANOVA 

with the exception that the mean-difference is corrected for measurement error and does not as-

sume homogeneity of variances over time. The ∆y,1,i variance captures individual differences around 

the mean change which are nearly impossible to describe with cross-lagged regression models. A 

requirement for LDS models is that the latent or common factors y1,t1,i and y1,t2,i have the same 

metric at each time of measurement; therefore factor loadings and intercepts of their indicators 

must be forced to be invariant across the two waves (Meredith, 1993). This simple LDS model 

provides the basis for more complex models like the cross-lagged LDS model for dyadic data 

portrayed in Figure 3. 
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Note. y1,t2,i and y2,t2,i disturbances are fixed at zero to identify model parameters as well as force the two-wave decomposition. y1 and y2 

are measured with multiple indicators that are correlated and invariant both over time and across partner (correlations are not reported 

for clarity sake). 
 

FIGURE 3 

Cross-lagged latent difference score model with multiple indicators for two-wave dyadic data. 

 

 

The model can be conceptualized as consisting of two parts: a) a longitudinal factor model 

that defines the latent variables for the two partners at two occasions and b) a structural model 

that specifies latent level and change factors for each partner and how changes in latent variables 

are related within and across partners. The longitudinal factor model assumes that the same con-

figuration of relationships between multiple indicators (or observed variables) and the latent or 

common factor exists both across waves and across partners. Given a satisfactory longitudinal 

factor model, the structural model decomposes each partner common factor at t2 into its corre-

sponding common factor and latent difference factor, as required by the basic LDS model, by fix-
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ing its residual variance to zero. The structural model assumes that each partner’s initial common 

factor predicts its corresponding LDS (b1 and b2) as well as the other partner’s LDS (g1 and g2). 

By modelling a covariance between the disturbances, d∆y,1,i and d∆y,2,i, which represent the varia-

tion in ∆y,1,i and ∆y,2,i unexplained by the set of the model paths, the model also assumes that one 

partner’s LDS (∆y,1,i) covaries with the other partner’s LDS (∆y,2,i), indicating that changes are 

correlated across partners. 

The cross-lagged LDS model for dyadic data presented here emphasizes the need for (a) ex-

plicit hypotheses regarding measurement invariance of common factors, (b) explicit structural hy-

potheses about means and covariances, and (c) inclusion of latent difference scores to express spe-

cific temporal hypotheses about within and across partner changes. SEM offers a powerful technique 

to simultaneously test these specific hypotheses as well as to compare them with alternative ones 

(McArdle, 2009). For example, SEM allows us to determine whether parameters like the means of 

LDS, the residual variance of LDS or cross-lagged coefficients g1 and g2 are significantly different 

from zero or are equivalent across partners. At the same time cross-lagged LDS models require large 

samples in order to be estimated via SEM, a condition that is seldom met in two-wave, dyadic de-

signs that span long time periods. To overcome this difficulty one can estimate the cross-lagged LDS 

models by including only the two latent variables that assess change. This strategy, already adopted 

by a few scholars (e.g., Gerstorf, Röcke, & Lachman, 2010; McArdle & Prindle, 2008), assumes that 

simple difference scores are not inherently unreliable. As Williams and Zimmerman (1996) showed, 

the reliability of difference scores is also a function of the standard deviations of their component 

scores: reliability increases as long as standard deviations are not the same. Actual research data 

suggest that discrepancies in the values of standard deviations (e.g., due to differential developmen-

tal change) are quite common (e.g., Collins, 1996; Nesselroade & Baltes, 1979; Nesselroade & Ca-

ble, 1974; Williams & Zimmerman, 1996). Moreover, when we study change we are primarily inter-

ested in intraindividual variability, or individual differences in change scores, not on interindividual 

variability, or individual differences per se. Clearly classical definitions of reliability do not take into 

account intraindividual variability. This means that even though an instrument perfectly measures 

change over time, it is possible for it to show poor reliability, and vice versa. For this reason, one can 

question, as Collins (1996) did, whether it is advisable to have reliable difference scores, “if this says 

nothing about whether they are precise measures of change” (p. 290). 

In light of the above considerations, we therefore respecify the model represented in Fig-

ure 3 as one that assumes latent factors for difference scores only (see Figure 4). This LDS model 

starts with the same observed data Y1,t1,i, Y1,t2,i, Y2,t1,i, and Y2,t2.,i considered in simple differences 

scores used in cross-lagged regression models (i.e., it does not imply multiple indicators and 

therefore posits Y1,t1,i and Y2,t1,i are measured without error). However, this LDS model assumes 

that the differences between Y1,t2,i and Y1,t1,i and between Y2,t2,i and Y2,t1,i are unobserved or latent 

variables such that  

iYitit YY ,1,,1,1,2,1 ∆+=  and iyititiiY dYgYdc ,1,1,,221,,111,1, ∆+++=∆  (3-4) 

iYitit YY ,2,,1,2,2,2 ∆+=  and i,2,i1,,11i1,,222,2, yttiiY dYgYdc ∆+++=∆  (5-6) 

∆Y,1,i and ∆Y,2,i are unobserved variables. In other words, difference scores are not directly measured 

but are inferred from other model relations. The model is simply a reinterpretation of the cross-

lagged regression model depicted in Figure 1 and formalized through Equations (1) and (2). In fact 

b1 = s1 ‒ 1 and b2 = s2 ‒ 1 (see Figures 1 and 4) and intercepts c1i and c2i are the same for the two 

models (as previously outlined for cross-lagged regression models, also in this case it is important 
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to center the observed variable means around both partners’ grand mean in order to obtain coeffi-

cients comparable across dyad members). Thus, having the same number of parameters and achiev-

ing the same fit, the cross-lagged regression model of Figure 1 and the cross-lagged latent score 

model of Figure 4 are not alternatives that can be tested against each other. Nonetheless, they differ 

in that within-person changes are not described in cross-lagged regression models, whereas they are 

parameters of cross-lagged difference score models (McArdle, 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 
FIGURE 4 

Cross-lagged latent difference score model without multiple indicators for two-wave dyadic data. 

 

 

ILLUSTRATION 

 

We now illustrate how to fit a series of cross lagged-models to investigate the longitudi-

nal relationships between husbands and wives’ marital forgivingness, which is defined as the ten-

dency to forgive the spouse across different offences and occasions. Despite the recent, dramatic 

growth in research on forgiveness, few studies have investigated reciprocity of forgiveness in 

close relationships, where partners are likely to repeatedly offend and forgive (or not forgive) 

each other (for exceptions see Hoyt, Fincham, McCullough, Maio, & Davila, 2005; Paleari, Re-

galia, & Fincham, 2011). Equity theory suggests that spouses tend to reciprocate partner forgive-

ness; nonetheless, existing evidence indicates that imbalance between the granting and receiving 

of marital forgiveness is a more common experience at least over short time periods (Paleari et 
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al., 2011). The present data were therefore collected to examine whether and to what extent part-

ners’ forgivingness was related over a long time frame.  

Data come from a 10-year follow-up study involving a small sample of married couples. 

Given the limited number of cases available, we first estimated a series of nested cross-lagged re-

gression models and then we compared them with corresponding cross-lagged LDS models positing 

within-partner difference scores as the only latent factors. The two types of cross-lagged models al-

low one to evaluate the degree to which each spouse’s marital forgivingness predicts their own as 

well as their partner’s forgivingness over a 10-year period. They also permit one to determine 

whether these actor and partner effects are significantly different across husbands and wives.  

Nonetheless, in addressing the above questions, the two types of cross-lagged models em-

phasize complementary aspects of within-partner longitudinal relations: cross-lagged regression 

models evaluate within-person stability in marital forgivingness (stability effects), whereas cross-

lagged LDS models evaluate within-person change in marital forgivingness (change or proportional 

coefficients). Moreover, because within-person changes are explicit parameters of cross-lagged LDS 

models, these models evaluate the proportion of variance in marital forgivingness change accounted 

for by the set of paths in the model, whereas cross-lagged regression models evaluate the proportion 

of variance accounted for in marital forgivingness at t2. 

Finally, we estimated a series of nested cross-lagged LDS models with multiple indicators, 

or cross-lagged common factor LDS models, with the sole intent of providing the reader additional 

information about the modelling method, as the limited sample size does not allow estimation of 

reliable parameters in this last case. Cross-lagged common factor LDS models allow one to deal 

with the same research questions addressed by cross-lagged LDS models positing within-partner 

difference scores as the only latent factors, but they provide a more accurate evaluation of change 

over time by partialling out measurement error from the computation of change scores. 

 

 

Participants and Procedure 

 

Married couples (n = 122) in Northern Italy were identified through their children’s high 

school to participate in a study on marriage. Sixty one couples agreed to a 10-year follow-up sur-

vey (conducted in 2010) in return for a petrol coupon. At t1, spouses had been married an average 

of 19.42 years (SD = 6.97) and had 2.11 children (SD = 0.73); both husbands and wives were in 

their mid-forties (M = 46.33 and 44.08, respectively; SD = 6.95 and 6.17, respectively). 

Spouses who provided data at t2 represent 50% of the original sample (27% could not be 

contacted, 15% of couples refused to take part in the follow-up, and 8% were no longer eligible 

to participate because of divorce or death). Participants who provided data at both t1 and t2 did 

not differ from those who provided only t1 data in terms of demographics or any of the variables 

investigated. Nonetheless, the findings reported must be interpreted with caution because of the 

selective survival typically found in longitudinal studies that span long periods of time. 

 

 

Measure 

 

Within the context of a larger longitudinal study on marital forgiveness and well-being, 

each spouse completed the same marital forgivingness measure at t1 and t2. The measure assessed 



 

 

TPM Vol. 22, No. 2, June 2015 

287-308 – Special Issue 

© 2015 Cises 

 

 

Paleari, F. G., & Fincham, F. D. 
Cross-lagged latent change of marital  

forgivingness 

297 

the tendency to forgive the partner when hurt or wronged by him/her using nine items from the 

Marital Offence-Specific Forgiveness Scale (MOFS; Paleari, Regalia, & Fincham, 2009). Items 

were modified so that they referred to marital transgressions in general rather than to a single 

transgression (e.g., “Although she/he hurt me, I definitely put what happened aside so that we 

could resume our relationship”; see Paleari et al., 2011) and were rated on a 6-point Likert scale 

(1 = very strong disagreement, 6 = very strong agreement). 

 

 

Preliminary Analyses: Establishing Factorial Invariance 

 

Before estimating any model, analyses were performed to test the invariance of the for-

givingness measure across time and gender. Exploratory factor analyses revealed that all forgiv-

ingness items loaded on the same factor except for two items, which loaded on a different factor 

for husbands at t2 and were dropped. Confirmatory factor analyses (CFAs) were then performed 

on the remaining seven items to confirm the unidimensional solution for husbands and wives as 

well as to test for factorial invariance across measurement waves. Establishing factorial invari-

ance is important to assure that the same construct is assessed and that scale scores fall on the 

same metric across time, so that change can be estimated unambiguously (Widaman, Ferrer, & 

Conger, 2010). For this purpose, a hierarchy of increasingly stringent tests of factorial invariance 

was used (Meredith, 1993). Specifically, we first tested configural invariance for husbands and 

wives by estimating baseline models which only require the number and pattern of factors to be 

equal across waves. These baseline models were then compared to progressively more con-

strained models, namely weak factorial invariance models which impose equality constraints for 

factor loadings, strong factorial invariance models which add equality of manifest variable inter-

cepts, and finally strict factorial invariance models which add equality of manifest variable error 

term variance. In all these models manifest variable error terms were allowed to correlate across 

waves (Bijleveld et al., 1998). When there was evidence of one noninvariant measurement pa-

rameter in any model, but the remaining parameters were invariant, analyses proceeded in the 

context of partial measurement invariance. Models representing strong or strict factorial invari-

ance, even though partial, must fit the data better than the less constrained ones in order to iden-

tify the same latent construct over time. 

As the previous sequential models are all nested, we compared their fit through the likeli-

hood chi-square difference test. Given that our data were nonnormal, incomplete in a few cases, and 

came from a small sample, we relied on the Bartlett correction, which performs well under these 

three conditions, in rescaling the Yuan-Bentler chi-square statistics (generally used with nonormal, 

incomplete data), into the Bartlett corrected Yuan-Bentler chi-square (Y-Bχ
2
b) (Savalei, 2010).

1
 

Bartlett corrected Yuan-Bentler chi-square difference test statistics were then computed following 

the steps suggested by Satorra (Bryant & Satorra, 2011; Satorra & Bentler, 2011).
2
 The comparative 

fit index (CFI; Bentler, 1990) and the root-mean-square error of approximation (RMSEA; Bentler, 

2006) were also adjusted for nonnormality by incorporating the Y-Bχ
2
b into their calculations. 

Table 1 presents fit indexes and comparisons of models testing measurement invariance 

over time. A partial strong invariance model for husbands and the strict factorial invariance 

model for wives provided better fits for the data than the less constrained models, Y-Bχ
2

b (80) = 

101.40, p = .053; CFIb = .992; RMSEAb = .066, and Y-Bχ
2

b(88) = 84.05, p = .599; CFIb = 1.000; 
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RMSEAb = .000, for husbands and wives respectively. These findings show that a minority of pa-

rameters are noninvariant, thereby supporting the assumption that the forgivingness scale cap-

tures the same latent construct over time.  

 
TABLE 1 

Model fit of various across waves invariance models for husbands and wives 

 

Model Y-Bχ
2

b df ∆Y-Bχ
2

b CFIb RMSEAb 

Husbands 

Configural invariance 115.63*** 69 ‒ .997 .106 

Weak factorial invariance 100.61* 75 3.176 .999 .075 

Strong factorial invariance 123.37** 81 13.665* .983 .093 

Partial strong factorial invariance
a
 101.40 80 .235 .992 .066 

Wives 

Configural invariance 85.22 69 ‒ .991 .063 

Weak factorial invariance 86.85 75 3.376 .993 .051 

Strong factorial invariance 93.73 81 6.833 .989 .051 

Strict factorial invariance 84.05 88 1.540 1.000 .000 

aIntercepts were equal for six items out of seven. 

*p < .05. **p < .01. ***p < .001. 

 

 

Following Kenny et al.’s (2006) recommendations, we also tested the factorial invariance 

of the forgivingness scale across gender by adopting the same strategy used to establish meas-

urement invariance over time. Fit indexes and comparisons of model testing measurement invari-

ance across gender are reported in Table 2. 

 
TABLE 2 

Model fit of various across gender invariance models at t1 and t2 

 

Model Y-Bχ
2

b df ∆Y-Bχ
2

b CFIb RMSEAb 

t1 

Configural invariance 82.80 69 ‒ .936 .058 

Weak factorial invariance 78.87 75 2.086 .982 .029 

Strong factorial invariance 87.30 81 10.033 .973 .036 

Strict factorial invariance 86.70 88 3.800 1.000 .000 

t2 

Configural invariance 110.60** 69 ‒ .913 .100 

Weak factorial invariance 104.95* 75 4.565 .939 .080 

Strong factorial invariance 114.94** 81 17.005** .925 .084 

Partial strong factorial invariance
a
 101.81 80 .847 .955 .067 

aIntercepts were equal for six items out of seven. 

*p < .05. **p < .01.  
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The strict factorial invariance model and a partial strong invariance model were sup-

ported for t1 data and t2 data, respectively, Y-Bχ
2

b(88) = 86.70, p = .519; CFIb = 1.000; RMSEAb 

= .000, and Y-Bχ
2

b(80) = 101.81, p = .051; CFIb = .955; RMSEAb = .067, showing that the latent 

construct captured by the forgivingness scale did not substantially differ across gender. The in-

ternal consistency reliability was good for both husbands (α =.93 at t1 and .84 at t2) and wives (α 

=.92 at t1 and .89 at t2). Consequently, responses to items were averaged to form indexes of mari-

tal forgivingness. Descriptive statistics for these indexes are reported in Table 3. 

 
TABLE 3 

Means, standard deviations, and correlations 

 

 1 2 3 4 

1. Husbands forgivingness at t1 ‒    

2. Wives forgivingness at t1  .22 ‒   

3. Husbands forgivingness at t2 .67*** .39** ‒  

4. Wives forgivingness at t2 .14 .68*** .39*** ‒ 

Mean (SD)  4.47 (1.10) 4.19 (1.06) 3.94 (1.11) 3.83 (0.95) 

**p < .01. ***p < .001. 

 

 

Cross-Lagged Regression Analyses 

 

Both cross-lagged regression and latent difference score analyses were conducted using a 

SEM approach because it offers the simplest and most direct way to analyze data for distinguish-

able dyads like married couples. The EQS program was used for all SEM analyses (Bentler, 2006). 

When using SEM to estimate cross-lagged relations in dyadic data, one should center 

each variable by using a common meaningful value computed across partners to have parameters 

comparable across dyad members and waves. Accordingly, we first centred forgivingness scores 

by using the t1 grand mean computed across the entire sample (M = 4.33). 

We then estimated a series of nested, cross-lagged models in order to explore the rela-

tionships between husbands and wives’ forgivingness over time. Specifically, we first estimated a 

highly constrained regression model (RMHC) in which (a) means for all the variables of interest 

were set to be equal between husbands and wives, (b) variances for all the variables were set to 

be equal between husbands and wives, (c) intrapersonal covariances or stability effects (s1, s2) for 

husbands and wives were constrained to be equal, and (d) interpersonal covariances or partner 

effects (p1, p2) for husbands and wives were constrained to be equal. This comprises the Omnibus 

Test of Distinguishability (Kenny et al., 2006), because it tests whether dyad members are em-

pirically distinguishable. Conceptually, partners in heterosexual relationships are distinguishable 

on the basis of sex but conceptually distinguishable partners may not be empirically distinguish-

able. This is the case if the highly constrained model just described fits the data better than less 

constrained models; if so then one could, in principle, treat the individual rather than the couple 

as the unit of analysis. Next, we estimated a less constrained model (RMLC) in which we released 

those constraints that, on the basis of the Lagrange Multiplier test (Bentler, 2006), were shown to 

have been improperly imposed. This model tests the hypothesis that the two partners differ on 
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some parameter estimates. Because our main purpose was to evaluate differences in the longitu-

dinal paths within and across partners, releasing constraints on stability and partner effects could 

be particularly informative. Finally, the previous less constrained model was compared with al-

ternative ones in which partner effects were alternatively or simultaneously set equal to zero 

(RMLC-NO HUSBAND PARTNER EFFECT; RMLC-NO WIFE PARTNER EFFECT; RMLC-NO HUSBAND AND WIFE PARTNER EF-

FECT). These last models test the hypotheses of unidirectional or no longitudinal paths across part-

ners, respectively. Because all the models were nested they were compared using the likelihood 

chi-square difference test. The sample size requirements are no different than for ordinary regres-

sion analysis (Kenny & Cook, 1999), and were fully satisfied in the present case. The highly con-

strained model (RMHC) displayed a good fit (see Table 4), showing that spouses were empirically 

indistinguishable with respect to forgivingness when assessed over time.  

 
TABLE 4 

Model fit of nested cross-lagged regression models or cross-lagged LDS models  

without multiple indicators 

 

Comparison model χ2(df ) p Baseline model ∆χ2
  p 

RMHC  

or LDSMHC 
χ2(6) = 7.326  .292 ‒ ‒ ‒ 

RMLC 

or LDSMLC  
χ2(5) = 2.913 .713 

RMHC 

or LDSMHC  
χ2(1) = 4.413 .036 

RMLC-NO HUSBAND PARTNER EFFECT 

or LDSMLC-NO HUSBAND PARTNER EFFECT 
χ2(6) = 2.915 .814 

RMLC  

or LDSMLC  
χ2(1) = ‒0.002 ns 

RMLC-NO WIFE PARTNER EFFECT  

or LDSMLC-NO WIFE PARTNER EFFECT 
χ2(6) = 10.721  .097 

RMLC  

or LDSMLC  
χ2(1) = ‒7.804  .005 

RMLC-NO HUSBAND AND WIFE PARTNER EFFECT 

or LDSMLC-NO HUSBAND AND WIFE PARTNER EFFECT 
χ2(7) = 10.751  .150 

RMLC 

or LDSMLC  
χ2(2) = ‒7.834 .020 

Note. Fit indices for cross-lagged LDS models without multiple indicators are equal to those of cross-lagged regression models. When 

the df are small, as in present cases, both the CFI and the RMSEA can be misleading (the CFI can be large and the RMSEA very 

small despite a good fit). For this reason fit measures were not reported (see Kenny et al., 2006). 

 

 

Inspection of the Lagrange Multipliers test however revealed that the partner effect con-

straint was improperly imposed and should be released. As expected, the model with partner effects 

freely estimated (RMLC) fitted the data significantly better than the previous one. It also had a better 

fit than models estimating no wife to husband partner effect (RMLC-NO WIFE PARTNER EFFECT) or no 

partner effects at all (RMLC-NO HUSBAND AND WIFE PARTNER EFFECT). Conversely, the model with partner 

effects freely estimated (RMLC) fitted the data equally well compared to the one positing no hus-

band partner effect (RMLC-NO HUSBAND PARTNER EFFECT). As it is more parsimonious, parameters for the 

last model that assumed no husband to wife partner effect were computed (see Figure 5; unstan-

dardized parameters are reported, because SEM standardizes parameters separately for each mem-

ber type and therefore yields coefficients that are not comparable across husbands and wives).  

Overall the model explained 53% and 46% of variance in husbands and wives’ forgiv-

ingness at t2, respectively. For husbands and wives stability effects were equally large, positive, 

and statistically significant (.59), indicating that marital forgivingness was quite stable over time.  
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*p < .05. **p < .01. ***p < .001. 

 
FIGURE 5 

Unstandardized parameter estimates for the cross-lagged regression model positing no husband to wife 

partner effect (RMLC-NO HUSBAND PARTNER EFFECT). 

 

 

The wife to husband partner effect was positive and statistically significant (.23), whereas there 

was no significant husband to wife partner effect. Thus, support for a unidirectional influence 

model was found: wives’ forgivingness at baseline predicted an increase in husbands’ forgiving-

ness over a 10-year period, whereas husbands’ forgivingness at baseline was unrelated to wives’ 

changes in forgivingness over the same period. Specifically, for each unit increase in the wife’s 

forgivingness, the husband’s forgivingness increased by .23 units 10 years later, whereas a unit 

increase in the husband’s forgivingness was unrelated to the wife’s change in forgivingness 10 

years later. The model also indicates that husbands’ forgivingness did not significantly covary 

with wives’ forgivingness at t1 (.24), but husbands’ and wives’ forgivingness were significantly 

related at t2 (.13), after controlling for stability and partner effects. Finally, the model reveals that 

spouses’ average forgivingness was significantly lower at t2 (‒.43) than at t1 (.00) and it did not 

vary by sex at either time point.  

 

 

Cross-Lagged Latent Difference Score Analyses without Multiple Indicators 

 

Cross-lagged latent difference scores were modelled using the same strategy outlined 

above. That is, we started by fitting a highly constrained model in which means, variances, and both 

intrapersonal and interpersonal covariances were forced to be equal across partners (LDSMHC) 

and then compared this model to a less constrained one (LDSMLC) in which we released those 

constraints that were shown to have been improperly imposed. Finally, the previous, less con-

strained model was compared with alternative ones in which partner effects were alternatively or 

simultaneously set equal to zero (LDSMLC-NO HUSBAND PARTNER EFFECT; LDSMLC-NO WIFE PARTNER EF-

FECT; LDSMLC-NO HUSBAND AND WIFE PARTNER EFFECT). The sample size requirements of at least five 
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cases for every estimated parameter (Bentler & Chou, 1987) are met for these models; in fact the 

ratio of sample size to estimated parameters varied between 7.63 : 1 and 8.71 : 1 for the LDSMLC 

and the LDSMLC-NO HUSBAND AND WIFE PARTNER EFFECT, respectively. 

As they are reinterpretations of cross-lagged regression models, all these LDS models had 

the same fit as the cross-lagged regression models presented earlier. Thus, the LDSMLC-NO HUSBAND 

PARTNER EFFECT was again the best fitting model (see Table 4). Its parameters are the same as the cor-

responding cross-lagged regression model with the exception of regression parameters of change in 

one partner’s forgivingness on the same partner’s baseline forgivingness (see Figure 6).  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*p < .05. **p < .01. ***p < .001. 

 
FIGURE 6 

Unstandardized parameter estimates for the cross-lagged latent difference score model positing no husband 

to wife partner effect (LDSMLC-NO HUSBAND PARTNER EFFECT) and having no multiple indicators. 

 

 

These parameters, sometimes called proportional coefficients, indicate the linear and 

proportional within-person change in forgivingness among husbands and wives: for a unit in-

crease in spouses’ forgivingness, their within-person change in forgivingness decreased by ‒.41 

units over a 10-year period, net of any controls specified in the model. Thus, marital forgiving-

ness decreased in both husbands and wives over time, even though this decline is less pronounced 

among men married to wives who were more prone to forgive at baseline (.23). Also, changes in 

forgivingness were on average negative and significantly different from zero (‒.43), were signifi-

cantly associated (.13) and did not differ across husbands and wives, as indicated by the previous 

cross-lagged regression model. Overall, the model explained 31% and 28% of variance in hus-

bands and wives’ forgivingness change, respectively.  
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Cross-Lagged Latent Difference Score Analyses with Multiple Indicators 

 

Finally we re-estimated the same cross-lagged latent difference score model assuming no 

husband partner effect (LDSMLC-NO HUSBAND PARTNER EFFECT) with multiple indicators, thereby mod-

elling a cross-lagged common factor latent difference score model, so as to take into account pos-

sible measurement errors in difference scores. In this model, common factors for forgivingness 

were estimated by use of parcel indicators as measured variables to ensure a parsimonious model 

(for a discussion of the pros and cons of the practice of parceling see Little, Cunningham, & Sha-

har, 2002); the dataset was therefore different from the one used in previous models. Parcels can 

be defined as aggregate-level indicators comprised of the average (or sum) of two or more items, 

responses or behaviors. In the present case, three parcel indicators were generated for each factor 

by averaging the two items having the highest and the lowest item-to-construct loadings and then 

assigning the resulting six items randomly to parcels, each computed as a two-item mean score. 

Parcels were kept consistent across the two partners and the two occasions. The model was com-

puted under constraints of strict measurement invariance across waves and partners, which caused 

only slight and insignificant reductions of overall model fit. This assured that factor scores had 

the same unit of measurement across waves and partner. Also, means and variances were fixed to 

0 and 1, respectively, in the level factors (factors which do not represent change) in order to iden-

tify the model. Hence, means and variances in the change factors can be directly interpreted as 

differences from the level estimates. The model showed an acceptable fit, χ
2
(63) = 81.975, p = 

.054; CFI = .971; RMSEA = .077. However, it must be noted that sample size requirements are 

far from satisfactory; the ratio of sample size to estimated parameters was only 3.39 : 1 in the 

present case. For this reason, findings were presented for heuristic purposes and must be consid-

ered with caution. 

When compared to the corresponding cross-lagged LDS model without multiple indica-

tors, this model explained a somewhat lower proportion of change variance for wives (23%), but 

it identified parameters for structural relations quite similar to those of the previous model with 

no common factors. This result is consistent with the hypothesis that cross-lagged LDS models 

can be an appropriate strategy to detect change over time even for sample sizes where it is not 

possible to use multiple indicators. Specifically, controlling for measurement errors leads to only 

a marginal decrease in model parameters, with the exception of the covariance between changes 

and the wife to husband partner effect which became slightly stronger (see Figure 7). As system-

atic measurement error that is stable over time manifests in autoregressive models in the form of 

upwardly biased stability estimates for the concept of interest, the decrease in stability parameters 

was somewhat expected. 

Overall the model confirms that, even when latent change is estimated through common 

factors partialling out measurement errors, marital forgivingness significantly and equally de-

creased within husbands and wives over a 10-year period; this decline was reduced when hus-

bands (but not wives) were married to a more forgiving partner at baseline. When compared to 

alternative models in which the wife or both spouses partner effects were set equal to zero 

(LDSMLC-NO WIFE PARTNER EFFECT; LDSMLC-NO HUSBAND AND WIFE PARTNER EFFECT), the LDSMLC-NO HUS-

BAND PARTNER EFFECT yielded the best fitting model also in the present case (see Table 5). 

The presence of only one partner effect from wives to husbands suggests that husbands 

were dependent on their wife with respect to forgivingness: husbands became less unforgiving as 
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long as their partner was more disposed to forgive them 10 years earlier. Conversely, even 

though wives’ decline in forgivingness was similar to that of husbands, it was not significantly 

affected by their partners’ previous tendency to forgive.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note. Means and variances of forgivingness at t1 were fixed to 0 and 1, respectively, and disturbances of forgivingness at t2 were fixed 

at zero to identify model parameters as well as force the two-wave decomposition. Forgivingness was measured with multiple indica-

tors that were correlated and invariant both over time and across partner (correlations between indicators and indicators intercepts are 

not reported for clarity sake). 

 
FIGURE 7 

Unstandardized parameter estimates for the cross-lagged latent difference score model positing no husband 

to wife partner effect (LDSMLC-NO HUSBAND PARTNER EFFECT) and having multiple indicators. 

 

 

CONCLUSION 

 

This article has presented the use of cross-lagged LDS models to conceptualize and meas-

ure change in two-wave dyadic data. In contrast to cross-lagged regression models, cross-lagged 

LDS models permit us to estimate and describe within-person changes as well as their covariation 

across partners. Specifically, they assume that each partner score at follow-up is composed of the 

same partner score on the same variable at baseline plus an unobserved change score; they also  
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TABLE 5 

Model fit of nested cross-lagged LDS models with multiple indicators 

 

Comparison model χ
2
(df ) p CFI RMSEA Baseline model ∆χ

2
  p 

RMHC  

or LDSMHC 
χ

2
(63) = 88.122 .020 .961 .089 ‒ ‒ ‒ 

RMLC  

or LDSMLC  
χ

2
(62) = 81.973 .046 .969 .080 

RMHC  

or LDSMHC  
χ

2
(1) = 6.149 .013 

RMLC-NO HUSBAND PARTNER EFFECT 

or LDSMLC-NO HUSBAND PARTNER EFFECT 
χ

2
(63) = 81.975 .054 .971 .077 

RMLC 

or LDSMLC  
χ

2
(1) = ‒0.002 ns 

RMLC-NO WIFE PARTNER EFFECT  

or LDSMLC-NO WIFE PARTNER EFFECT 
χ

2
(63) = 93.058  .008 .953 .097 

RMLC  

or LDSMLC  
χ

2
(1) = ‒11.085 .000 

RMLC-NO HUSBAND AND WIFE PARTNER EFFECT 

or LDS MLC-NO HUSBAND AND WIFE PARTNER EFFECT 
χ

2
(64) = 93.077  .010 .955 .095 

RMLC  

or LDSMLC  
χ

2
(2) = ‒11.104 .004 

 

 

 

 

 

 



 

 

 

 
 

 
TPM Vol. 22, No. 2, June 2015 

287-308 – Special Issue 

© 2015 Cises 

 

 

Paleari, F. G., & Fincham, F. D. 
Cross-lagged latent change of marital  

forgivingness 

306   

posit that each partner change score is a dependent variable in a simultaneous equation with in-

tercept, lagged autoregression from the same partner baseline score and cross-lagged regression 

from the other partner baseline score. Thus, these models suggest that some part of the change in 

each partner score may be due to both partners’ prior starting point. Because of the time-order re-

lationships among the variables, cross-lagged effects can be properly interpreted as predictive 

paths, but cannot be considered causal paths. In fact some other unmeasured variable may be the 

causal mechanism driving the observed pattern of influences as well as t1 constructs, which are 

assumed to be exogenous, but may not represent the true beginning of the time ordered sequence 

of relationships among the constructs (Little et al., 2006).  

Our illustration shows that cross-lagged LDS models can be a suitable means to analyze 

within-partner change over time even when it is not feasible to estimate common factors owing to 

sample size. In this case, however, it is advisable to adopt the following two procedures in order 

to have parameters that are comparable across both waves and dyad members. First, the reliabil-

ity and invariance of measures across time and gender must be established, and, second, variables 

must be centered by using a common meaningful value computed across dyad members.  

Although cross-lagged LDS models with multiple indicators have sometime been used to 

analyze change in two-wave dyadic data (e.g., Cong & Silverstein, 2011; Lindwall, Larsman, & 

Hagger, 2011; Magee, Miller, & Heaven, 2013; Schilling, Wahl, & Wiegering, 2013), we hope to 

have shown that they are equally applicable to situations in which small sample sizes require 

them to be estimated without multiple indicators. Of course, cross-lagged common factor LDS 

models with multiple indicators (sample size permitting) are preferable because they partial out 

measurement error from the computation of change scores. We must however note that, when-

ever data from more than two time points are available, it is possible to estimate independently 

true change score and its error variance using models that do not imply common factors. These 

models are known as dual change models because, beside autoregressive effects, they take into 

consideration another internal source of change, not considered by cross-lagged LDS model, that 

is nonstationarity or natural change (for more details, see King et al., 2006).  

Notwithstanding these alternatives, cross-lagged LDS models are appropriate methods of 

estimating change in the context of two-wave nonindependent data like that provided by married 

couples. Finally, it is worth noting that cross-lagged LDS models complement rather than com-

pete with other better known methods of analysis, including cross-lagged regression and growth 

curve models. 

 

 

NOTES 

 

1. The Bartlett corrected Yuan-Bentler chi-square was computed as follows:  

( )
,BY

16

542
1BY

22
χ−









−

++
−=χ−

n

kp
b   

where k is the number of latent factors in the model. The adjustment depends on sample size, and dis-
appears asymptotically. 

2. The difference in Bartlett corrected Yuan-Bentler chi-square for nested models does not correspond to a 
chi-square distribution. For this reason, it is not possible to directly compare Y-Bχ

2
b of nested models 

by subtracting the Y-Bχ
2

b value for the less restrictive baseline model (M1) from the Y-Bχ
2

b value for 
more restrictive comparison model (M0), as researchers do for traditional chi-square difference tests. To 
overcome a similar difficulty related to the Satorra-Benteler scaled difference Bryant and Satorra (2011) 
suggest going through five steps which can also applied to the Bartlett corrected Yuan-Bentler chi-
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square difference test. First, because Y-Bχ
2

b is a standard goodness-of-fit chi-square value divided by a 
scaling correction factor, to recover the scaling correction factor (c) for a model, for use in scaled dif-
ference test, the standard goodness-of-fit chi-square value must be divided by the corrected chi-square 
value for that model (Y-Bχ

2
b in the present case). Thus, scaling correction factors for models M0 and M1 

can be obtained by dividing M0 and M1 standard chi-square by the Y-Bχ
2

b value for each model. Sec-
ond, the scaling correcting factor for each model must be multiplied by the model’s df. Third, this prod-
uct for M1 model must be subtracted from the same product for M0 model. Fourth, the result must be 
divided by m (i.e., the difference in df between M0 and M1) to obtain the scaling factor for the scaled 
difference test (cd). Finally, the difference in standard chi-square values of models M0 and M1 must be 
divided by the scaling factor (cd), with df for the scaled difference test m = df for model M0-df for model 
M1. In the event that the Bartlett corrected Yuan-Bentler chi-square difference test is negative, Bryant 
and Satorra (2011) suggest replacing M1 with M10 in the previous computations, where M10 is the base-
line model with number of interactions fixed at zero and the final parameter estimates for M0 as starting 
values. Thus, c for M10 is then computed by dividing the standard chi-square value for M10 by Y-Bχ

2
b 

for M10 and c for M10 is used in place of c for M1 to compute the correction factor for cd (for more de-
tails see Satorra and Bentler, 2011). 
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