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The Maslach Burnout Inventory (MBI; Maslach, Jackson, & Leiter, 1996) is the most commonly 
applied measurement instrument for the assessment of burnout. In order to gain further insight into the 
controversy surrounding its psychometric properties, we conducted a comprehensive, robust, item re-
sponse theory based psychometric analysis of a version of the German translation of the MBI within a 
sample of physicians recruited via a sampling procedure from a full medical register. The psychometric 
analysis is based on a two-step procedure which incorporates a general nonparametric analysis fol-
lowed by a parametric analysis. The analysis shows departures of the MBI scales from the usually re-
ported three-dimensional factor structure and highlights two potentially misfitting items. Deviations of 
the subscales from a graded response model are assessed via the use of posterior predictive p-values 
and results of a simple nonparametric method for scale construction are reported. 
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In contrast to clinical phenomena such as depression for which an adequate, normed 

method of assessment, the Diagnostic and Statistical Manual of Mental Disorders criteria, exists, 

the assessment of burnout still lacks such a unified approach. This could be related to the severe 

difficulties which arise with respect to differential diagnosis (see Korczak, Kister, & Huber, 

2010). As a consequence of this and due to the lack of a gold standard of measuring burnout, the 

construct of burnout has traditionally been equated (at least within the research domain) with the 

scores of a particular questionnaire, the Maslach Burnout Inventory (we refer to the Maslach 

Burnout Inventory-Human Services Survey, MBI-HSS — hereafter abbreviated to MBI; 
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Maslach, Jackson, & Leiter, 1996). The MBI is by far the most employed scale for the assess-

ment of burnout (Schaufeli & van Dierendonck, 2000). Using field research along with explora-

tory analysis, it was constructed according to intuitive reasoning and the method of inductive 

item selection (Maslach, Jackson, & Leiter, 1997). More specifically, the original item pool con-

sisting of 47 items was reduced to 22 items and each item was assigned to one of three subscales. 

For the latter assignment the method of (orthogonal) factor analysis was used (Maslach, Jackson, 

& Leiter, 1997). In a purely operational sense (for a general methodological treatment of the op-

erational view, see Borsboom, 2006) these three subscale scores may serve the purpose of defin-

ing burnout. However, as the authors used a factor analysis model and as the major paradigm in 

evaluating psychological tests and questionnaires is based on latent variable models (see Mo-

lenaar, 1995), the MBI subscales have to be judged in terms of their psychometric properties. A 

comprehensive overview of conducted analyses of the scale is beyond the scope of this paper. 

However, it is safe to say that although some validity results (in terms of correlations with other 

criteria which are deemed appropriate) have been presented (e.g., Maslach, Jackson, & Leiter, 

1997; Schaufeli & Enzmann, 1998), it is still — despite its popularity — an open question as to 

whether the scale exhibits reasonable psychometric properties and may be used in a multitude of 

(diagnostic) settings. More specifically: 

a) The discriminatory power of the scale has been called into question. Using MBI scores 

as a diagnostic tool can lead to unsatisfactory sensitivity and specificity values (see, Kleijweg, 

Verbraak, & van Dijk, 2013). Further, Korczak et al. (2010) summarize the current status of con-

structing reasonable cut-offs and conclude that there is a general lack of (scientific) justification 

for using these cut-offs. 

b) In some cases, a reduction of the scale has been suggested. In one extreme case, the 

reduction to a bare minimum of two items was equally successful for predictive purposes when 

compared to the usage of the full 22-item scale (West, Dyrbye, Satele, Sloan, & Shanafelt, 2012). 

In addition, single item “versions” with acceptable sensitivity (relative to the MBI) have been 

proposed (Dolan et al., 2015). 

c) In many cases reliability estimates were barely satisfactory, passing the 0.70 threshold 

(Wheeler, Vassar, Worley, & Barnes, 2011). However, the generally recommended 0.80 thresh-

old (Nunnally & Bernstein, 1995) should be passed in order to use the measurement instrument 

for diagnostic purposes. Note that an estimated reliability near 0.70 implies that the critical dif-

ference between two different individuals tested with the MBI is near σ∙1.96∙√2(1-0.7) = 1.52∙σ, 

that is, that only a scale score difference as large as 1.5 times the standard deviation of the scale 

score is statistically meaningful. For a more thorough discussion of reliability thresholds we refer 

the reader to Carretero-Dios and Pérez (2007). 

d) There has been differing evidence when it comes to the factorial structure of the MBI. 

Some studies showed evidence for a three-dimension structure (e.g., Hwang, Scherer, & Ainina, 

2003), some reported item misfit within the three-dimension structure (Byrne, 1993), and others 

although supportive of a three-dimension structure — note that if indeed a two-factor solution 

were appropriate, then a confirmatory factor analysis (CFA) conducted under a three-factor mod-

el would not show any misfit — suggest a high correlation between two factors, so that collapsi-

bility to a two-factor model would seem possible (e.g., Lee & Ashforth, 1990; Loera, Converso, 

& Viotti, 2014). 
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In this paper we will concentrate our efforts on d) although we will also consider and dis-

cuss some aspects of b) and c).  

Note that — apart from some rare exceptions (e.g., Brand-Labuschagne, Mostert, Roth-

mann Jr., & Rothmann, 2013; de Vos et al., 2016; Gustavsson, Hallsten, & Rudman, 2010; Peri-

ard, 2016) — the primary approach in establishing the structure of the scale, in estimating the re-

liability, and in checking for model fit has been based on the classical test theory (CTT) model 

and the closely related approach of factor analysis. We were not able to identify a single study 

addressing the MBI which applies the more appropriate method of item response theory (IRT) 

and which at the same time relies on a valid sampling scheme. By the latter we refer to an actual 

sampling of subjects from a well-defined population in contrast to the commonly applied usage 

of ad hoc samples (e.g., graduate students). The aim of the present study is to provide an IRT 

analysis of the MBI questionnaire within a large sample of physicians (N = 994; Richter, Kos-

tova, Baur, & Wegner, 2014) who were drawn from a full medical register.  

After a methodological motivation of our approach in the subsequent section, we outline 

the employed IRT approach. The latter includes 1) a nonparametric procedure to check for test 

dimensionality; 2) the analysis of IRT based discrimination; 3) the highlighting of misfitted 

items; and 4) the application of a parametric IRT model in order to establish a common scale for 

further purposes (such as, e.g., linkage analysis). In the final section we summarize our findings 

concerning the psychometric properties with primary emphasis on test dimensionality — i.e., on 

point d). We provide links to CTT-based approaches and research findings and also point out 

methodological pitfalls concerning the usage of the MBI to measure burnout in a longitudinal 

framework. 

 

 

METHODS 

 

Statistical Analysis 

 

Before describing our procedure of analysis, it is necessary to explain the advantages of 

an item response analysis as compared to the ordinary approach which rests on a combination of 

CTT and factor analysis (connections between the two approaches are highlighted in Holland & 

Hoskens, 2003). 

 

 

The General Theoretical Framework 

 

Drawbacks of the classical approach 

 

One major reason for adopting IRT models instead of CTT approaches is tied to the 

measurement level of the items which are used in self-assessment questionnaires. The ordinal 

measurement scale of the items does not fit into the modeling assumptions underlying ordinary 

(linear) factor analysis and CTT (see Chapter 6 in Lee, 2007; Olsson, 1979b). This aspect is, for 

example, reflected in the partial inappropriateness of item-total correlations or in erroneous infer-

ences regarding test dimensionality (Olsson, 1979a, 1979b). A major problem when applying 

CTT model to categorical response data is that quite often the items’ difficulty becomes inter-
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mingled with the items’ discrimination. That is, in the CTT model the separation of difficulty and 

discrimination is presupposed, whereas within a categorical item the items’ difficulty constraints 

the maximal achievable correlation with other items (see Appendix for an example). One well-

known consequence of this, during the stage of item selection and scale construction, is the elim-

ination of easy and difficult items simply due to the fact that their corresponding correlation with 

the total score is low — demonstrating the partial inappropriateness of the item-total correlation 

for item selection within a pool of items which vary in item difficulty. The general advice of us-

ing CTT models only within a set of items wherein respondents primarily choose the intermediate 

categories rests on this fact (and in addition on the underlying normality assumption). However, a 

scale intended to measure a latent construct should also be able to reflect differences in low or high 

latent ability domains and therefore needs to incorporate items which vary in difficulty. 

But not only has the application of the CTT model to response data been criticized, 

moreover the interpretation and usage of coefficients derived from the CTT framework — like 

Cronbach’s alpha — has been heavily called into question (Sijtsma, 2009). In diagnostic settings 

the use of this and other CTT-based coefficients leads to confidence intervals with uniform length 

— regardless of the position of the test taker on the latent continuum. In contrast IRT-based ap-

proaches rest on test information curves (Birnbaum, 1968). They therefore reflect the fact that the 

discriminative power of a scale is not uniform across the latent continuum. 

In order to circumvent these drawbacks and to lay out a more suited method of analyzing 

scales, we subsequently adopt the IRT framework. Further, within this IRT-framework we try to 

make the analysis as robust as possible by using a set of minimal assumptions.  

 

 

The approach from item response theory 

 

Unidimensional IRT assumes that there is a latent variable θ, which is usually viewed as 

representing a meaningful construct (in the context of the first MBI subscale: emotional exhaus-

tion) that determines the responses of the test taker in a probabilistic manner. If Xi denotes the re-

sponse of a randomly chosen test taker to the i-th item of a scale consisting of k items, then the 

probability of achieving a certain score j on this item is modeled as a function of θ. The most 

general class of unidimensional ordinal item response models is characterized by the following 

modeling assumptions (Sijtsma & Molenaar, 2002): 

U) There is a one-dimensional (latent) variable θ determining the responses to the items 

in a probabilistic manner. (Unidimensional construct) 

M) The item step response functions — that is, the functions of type P(Xi ≥ j|θ) =: fi, ≥ j(θ) 

— are nondecreasing in θ. (Monotonicity) 

LI) Responses to different items are stochastically independent given θ, that is, if (i1 < ··· 

< il) is an arbitrary ordered selection of test items and if j1, ... jl are (any) fixed item scores, then 

the equation P(Xi1 = j1, . . . Xil = jlǀθ) = Πl
v = 1 P(Xiv = jvǀθ) holds. (Local independence) 

From these three assumptions a multitude of empirical restrictions on the data arise: for 

example, a) item pair covariances are guaranteed to be nonnegative; b) conditional item pair co-

variances are guaranteed to be nonnegative; and c) pairwise item covariances are nonnegative af-

ter stratification by the rest score (= sum score of the scale after removal of the item pair). For a 

more exhaustive overview we refer the reader to Holland and Rosenbaum (1986), Rosenbaum 

(1984), and Sijtsma and Meijer (2007). 
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These empirical consequences can be checked via direct computation of the (conditional) 

covariances for the dataset at hand without having to fit a computationally instable model or 

without having to rely on strong additional assumptions (like linearity). In addition, there are co-

efficients within the current modeling framework which allow for the quantification of item dis-

crimination while dealing with the restriction issue on the item pair correlations resulting from 

the categorical measurement scale. 

More specifically, the (pairwise) scalability coefficient Hi,j (Loevinger, 1948) — playing 

a key role in Mokken (1971) scale analysis — is defined as the ratio of the correlation between 

item i and item j and the maximal conceivable correlation between two items with the same mar-

ginal distributions. The scalability coefficient Hi of item i is the IRT analogue of the CTT item-

total correlation which however does not share with the latter the problem of mixing up item dif-

ficulty with item discrimination. It is a weighted average of the pairwise scalability coefficients 

involving item i: 
 

 

          (1) 

 
Moreover, the Hi-coefficients can be combined to a total coefficient H which reflects the 

power of the whole scale. A general rule of thumb demands H ≥ 0.3 (Mokken, 1971) in order for 

the scale to be considered as useful.1  

Thus, apart from procedures which allow for the testing of the unidimensionality axioms, 

there are also tools for item selection available. The merit of this approach lies in its simplicity 

and in the absence of strong modeling assumptions which may interfere with the goal of checking 

for unidimensionality. That is, if, for example, the fit of a graded response model were used to 

examine the unidimensionality hypothesis, then a bad fit of the model would not be conclusive 

evidence against unidimensionality because the misfit of the graded response model could simply 

be caused by the deviation of the item-step-response functions from the shape of a probit curve 

(the usual factor analysis model shares this drawback in that it presupposes a particular shape of 

the conditional expected value of the item score).  

After unidimensional scales have been established (or more precisely: the hypothesis of 

unidimensionality has not been rejected), the researcher may go on to test for specific parametric 

structures. This may be necessary for a multitude of reasons: 

a) A comparison of scale scores across different populations of test takers is more 

straightforward if a common scale for the item and the person parameter has been established. 

b) Linking scores across different measurement instruments (e.g., comparing burnout 

measurements resulting from two different scales) requires a parametric model structure. 

c) More elaborate measures of item discrimination and reliability are available via the fit-

ting of parametric models. In particular, the item and test information curves (Birnbaum, 1968) 

are available and enable an adaptive usage of the test as well as a quantification of the uncertainty 

underlying a diagnosis. 

Although the fitting of (ordinary) parametric IRT model is straightforward (relying, e.g., 

on a very general applicable Markov chain Monte Carlo (MCMC) approach), the evaluation of 

the fit of an IRT model has always been a difficult task, because — if one excludes the most be-

nevolent case of a Rasch model — there has been a lack of test statistics suited to check for mod-

𝐻𝑖 =   𝑐𝑗𝐻𝑖𝑗
𝑗  ≠𝑖

, 𝑐𝑗 : =  
Covmax  𝑋𝑖 ,𝑋𝑗 

 Covmax𝑙≠𝑖 (𝑋𝑖 ,𝑋𝑙)
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el fit (a notable exception appeared only recently; see Haberman, Sinharay, & Chon, 2013). This 

lack can be attributed to the difficulties in establishing asymptotic results in the IRT framework. 

In this paper we adopt the approach of Sinharay (2005) and evaluate the fit of the IRT model 

without the need to refer to asymptotic statistics by applying a Bayesian approach. The latter can 

be characterized by the following steps: 

1. For the dataset at hand, estimate the model parameters of the IRT model (e.g., the graded re-

sponse model). 

2. Generate N = 1000 pseudoreplicates of the dataset by using the estimated model parameters 

(more precisely by using draws from the posterior distribution of model parameters) in Step 1 

and a random number generator. 

3. Compare the value of an appropriately chosen test statistic — for example, item-total-

correlation — for the dataset with the corresponding values of the replicates (see Subsection 

“Evaluating the Fit of a Graded Response Model” within Section “Results” for a description of 

the test statistics which were used for the MBI). 

4. If the value of the present dataset is in the tail of the distribution of the replicates values, then 

reject the hypothesis of item/model fit. 

 

 

Application to the MBI 

 

Following the above general outline of the theoretical framework, we now describe the 

procedure which was used in this paper to analyze the MBI. First of all, we applied Mokken scale 

analysis to group the MBI items into homogeneous subscales using the previously described 

nonparametric measures of item discrimination Hi. The resulting subscales were then contrasted 

with the proclaimed three-dimension structure of the MBI and the scalability coefficients, which 

are not distorted by variations in item difficulty according to the remarks of the previous section, 

were used to further discern the items. Moreover, the property of manifest monotonicity (Junker 

& Sijtsma, 2000) was checked via the usage of the (default) implementation in the R package 

Mokken (van der Ark, 2007). Manifest monotonicity refers to the monotonicity of the conditional 

distribution function stated under M) — except that the conditioning is on the rest score rather 

than on the unobservable latent variable.  

Secondly, the proclaimed subscales of the MBI were checked for unidimensionality using 

a nonparametric evaluation — a), b), and c) in Subsection “The approach from item response 

theory” — based on the computation of conditional associations (conditional association repre-

sents the key statistical property resulting from a unidimensional model; see Holland & Rosen-

baum, 1986). More specifically, for each item triplet, X, Y, Z, the conditional covariances Cov(X, 

Y|Z = k) were checked descriptively for violations of unidimensionality (bearing in mind prob-

lems arising from sampling error). This provides a robust method to check for unidimensionality — 

as this check has to hold irrespective of the distribution of the latent variable and irrespective of the 

particular underlying IRT model. That is, if the model satisfies U), M), and LI) as stated in Subsection 

“The approach from item response theory,” then the items are conditionally associated. Consequently, 

conditional covariance needs to be nonnegative, providing the motivation for our approach.  

Finally, the last step in our approach involved the fitting of a specific parametric model to 

the three subscales of the MBI which were established in previous research via classical test theo-
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ry methods. More precisely, we evaluated the fit of a graded response model. The reason for 

choosing the graded response model (apart from its popularity) is that it enables comparisons to 

models which use factor analysis on the polychoric correlation matrix. As already described in 

Subsection “The approach from item response theory,” we used a Bayesian approach for fitting 

and evaluating the model. 

For each subscale a graded response model was fitted (detailed output available on re-

quest from the corresponding author). To evaluate the model fit, we used a method which relies 

on drawing Monte Carlo samples (Sinharay, 2005) and which was already briefly introduced in 

the previous subsection. Estimated parameters of a graded response model (for the particular sub-

scale) were used to generate new datasets (of the same size as the original one) which follow a 

graded response model. After N new datasets had been sampled, a test statistic was computed for 

each dataset and compared to the statistic corresponding to the actual dataset. If the latter was in 

the tail of the distribution of the simulated test statistics, then a potential misfit of the model was 

highlighted. For technical details and an exhaustive description of the procedure we refer the 

reader to Sinharay (2005). 

Motivated by our aim to check for departure from unidimensionality, we used the number 

of conditional covariance sign violations for each item as a test statistic.2 That is, for each sam-

pled dataset and for each item we calculated the number of times the item was involved in a 

negative covariance with another item (conditionally on the score of a third item). The posterior 

predictive p-value corresponding to this item fit statistic is then given by 2∙min(P(T ≤ tobs),P(T ≥ 

tobs)), wherein P(T ≤ tobs) is the value of the empirical distribution function of the drawn samples 

at the observed value of the test statistic tobs for the actual dataset. Additionally, we used the quan-

tiles of the sum score distribution as a second quantity to check for unusual deviations of the sum 

score distribution from the distribution implied by a graded response model. 

All simulations used five chains, 6,000 iterations, a burn-in of 2,000, and a total amount 

of retained samples of 1,000 (convergence was assessed via graphical methods; summaries are 

available on request from the corresponding author). Further, a truncated normal prior with mean 

equal to one and unit standard deviation was used for the discrimination parameters and the prior 

for the threshold parameters was equal to the distribution of the order statistic derived from sam-

pling independent standard normal variates. All computations were done in R (R Core Team, 

2014) and WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000). 
 

 

Participants and Instruments 

 

In order to assess the effects of the European Working Time Directive on German hospital 

physicians a study assessing various variables concerning family background, workability (WAI), 

burnout symptoms, and working conditions (e.g., night and shift work) was conducted. The partici-

pants for the study were sampled from the full medical register of physicians working in Hamburg. 

That is, the population was clearly defined (all physicians working in Hamburg with entries in the 

register) and a sample was drawn from this population (details can be found in Richter et al., 2014). 

Each of the N = 994 participants had to complete a comprehensive questionnaire. For our current 

purpose we focus on the measurement of burnout and the psychometric properties of the scale, so we 

refer the reader to Richter et al. for a detailed description of other key variables of the study. For the 

measurement of burnout, the study used a version of the German translation of the Maslach Burnout 
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Inventory (Barth, 1985; Maslach & Jackson, 1981) consisting of the three subscales — emotional 

exhaustion (EE), depersonalization (DP), and lack of professional efficacy (PA) — containing nine, 

eight, and five items, respectively. The whole scale therefore comprises 22 items (with each item as-

signed to one and only one subscale) with an ordinal response format, wherein each item score rang-

es from 0 (never) to 6 (every day). For ease of interpretation, we reversed the coding of the PA sub-

scale, so that high values in any subscale indicate “unfavorable” outcomes. 

 

 

RESULTS 

 

A brief overview of some sample characteristics is given in Table 1. A more comprehen-

sive description of the dataset can be found in Richter et al. (2014). Here we focus solely on the 

measurement properties of the items of the MBI. Table 2 shows item-total correlations along with 

the reliability estimates of the subscales (we only included coefficient α because it has become 

common practice to report it). The reliability estimates are satisfactory — however the assump-

tions underlying the use of coefficient α have not been examined yet. Even more importantly, the 

mere fact that the reliability is high/acceptable does not tell us anything about the dimensional 

structure of the scale (Sijtsma, 2009). This is a common misinterpretation of α. Alpha provides a 

lower bound to the reliability of a test when the assumptions of CTT are met. It does not provide 

further clues about test dimensionality.  

 
TABLE 1 

Descriptive statistics for the variables age, gender, and position 

 

Statistic Age  

(value) 
 Gender Frequency  

(%) 
 Position Frequency 

(%) 

Minimum 26.0  Male 55.3  Assistant doctor 67.4 

1st quantile 33.0  Female 44.7  Assistant medical director 26.9 

Median  39.0     Chief physician 3.9 

Mean 40.5     Other  1.7 

3rd quantile 47.0     Missing  0.1 

Maximum 64.0       

Missing 14.0       

 

In fact, we think that an appropriate judgement of scale reliability should rely on the concept 

of test information which is founded in IRT. So, we do not dwell on the interpretation of this CTT-

based summary statistic. 

Finally, the histograms of the scale sum scores depicted in Figure 1 should give the reader 

an impression about the variation of the scale score within the sample. Note that the skewness of the 

scores is incompatible with the classical maximum likelihood estimation (MLE)-based factor estima-

tion which presumes normality (see Chapter 9 in Mardia, Kent, & Bibby, 1979). Moreover, the mul-

tivariate skewness measures of 10.7 and 10.6 for the EE and the PA subscales, respectively, repre-

sent a borderline case with respect to the robustness of the MLE approach (see Muthén & Kaplan, 

1985), while the corresponding skewness of 3.5 for the DP subscale is of minor concern. 
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TABLE 2 

Correlations of each item with the rest score (= computation of the sum score after removal of the 

item). Reliability estimates based on coefficient α are given in brackets. 

 

Emotional exhaustion (α = .88) Correlation 

1 Emotionally drained .77 

2 Feel used up .61 

3 Fatigued in the morning .69 

6 Stress working with people .47 

8 Burned out .79 

13 Feel frustrated .67 

14 Working too hard .61 

16 Working with patients is a strain .43 

20 Feel like at the end of the rope .64 

Depersonalization (α = .75) Correlation 

5 Impersonal objects .58 

10 Become more callous .68 

11 Worry about hardening emotionally .63 

15 Don’t care about patients .50 

22 Patients blame for their problems .24 

Personal accomplishment (α = .81): Correlation 

4 Understand patients .47 

7 Deal with problems .56 

9 Positive influence .62 

12 Energetic .47 

17 Create relaxed atmosphere .57 

18 Exhilarated after work .53 

19 Accomplishment .54 

21 Deal with emotional problems calmly .42 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 1 

Histogram of the subscale scores of the MBI (German version). 

EE = emotional exhaustion; PA = personal accomplishment; DP = depersonalization.  
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Mokken Scale Analysis 

 

Following the concepts outlined in Section “Methods,” we first report the scalability co-

efficients — we used the R-package Mokken (Van der Ark, 2007) for computation — Hi for the 

items of the MBI under the given assignment to the three subscales. As can be seen in Table 3, 

the scalability coefficients within the PA subscale are of similar magnitude, whereas the items of 

the EE and of the DP subscales show stronger variations in scalability. In particular Item 22 is 

marked as a low discriminating item within the DP subscale. Overall the relative ordering of the 

items within each subscale is comparable to the ordering given by the item-total-correlation in 

Table 2. The total scalability coefficients are 0.509, 0.367, 0.397 for the EE, the PA, and the DP, 

respectively. In addition to the scalability coefficients, Mokken scale analysis includes a check of 

nonnegativity of the pairwise correlations and a check of monotonicity. The pairwise correlations 

are all nonnegative. The check of manifest monotonicity (necessary for unidimensionality) shows 

some violations for the PA and the DP subscales. These violations (see column labeled “#vi” in 

Table 3) are primarily located within the items with lowest Hi. Especially the last two items show 

strong violations of monotonicity.  

 
TABLE 3 

Nonparametric scalability coefficients Hi (along with their estimated asymptotic standard errors)  

for the items of the MBI subscales. The number of violations of the monotonicity of the function  

P(Xi  ≥ j|R−i = r) is shown in the column labeled #vi 

 

EE Hi (SE) #vi  PA Hi (SE) #vi  DP Hi (SE) #vi 

Item 1 0.590 (0.015) 0  Item 4 0.347 (0.024) 0  Item 5 0.432 (0.020) 0 

Item 2 0.519 (0.019) 1  Item 7 0.390 (0.021) 0  Item 10 0.486 (0.018) 0 

Item 3 0.531 (0.017) 0  Item 9 0.424 (0.018) 0  Item 11 0.462 (0.021) 0 

Item 6 0.383 (0.024) 0  Item 12 0.335 (0.022) 4  Item 15 0.385 (0.024) 1 

Item 8 0.604 (0.014) 0  Item 17 0.392 (0.022) 0  Item 22 0.199 (0.028) 3 

Item 13 0.517 (0.018) 0  Item 18 0.371 (0.022) 1     

Item 14 0.488 (0.019) 0  Item 19 0.374 (0.021) 2     

Item 16 0.381 (0.028) 1  Item 21 0.300 (0.023) 6     

Item 20 0.525 (0.020) 0         

Note. Hi = scalability coefficient; SE = standard error; #vi = number of violations of monotonicity; EE = emotional exhaus-
tion; PA = personal accomplishment; DP = depersonalization. 

 

 

The values of the scalability coefficients in Table 3 are dependent on the actual assign-

ment of the items to the subscales. Consequently, they do not indicate if an item is assigned to the 

“most suited” subscale. We now contrast the results of a nonparametric item selection procedure 

based on Mokken scale analysis (see Straat, Van der Ark, & Sijtsma, 2013) with the hypothesized 

assignment of the items. The procedure starts with the item pair with maximal pairwise scalabil-

ity coefficient and then seeks to add new items (ensuring maximal scalability coefficients) to the 

scale until the total H index drops below .30. As can be gleaned from Table 4 only two scales are 

established and two of the 22 items are deemed as unscalable. Moreover, literally every item of 

the DP subscale is collapsed into the EE subscale — that is, according to the item selection pro-

cedure, the EE and the DP subscale are indistinguishable.  
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We note however, that the newly created Scale 1 (see Table 4) still shows violations of 

manifest monotonicity and that increasing the cut-off in the automatic selection procedure did not 

resolve this issue (extensive summary statistics of the manifest monotonicity checks are available 

on request from the corresponding author).  

 
TABLE 4 

Scalability coefficients (Hi) and number of violations of manifest monotonicity (#vi)  

after applying an automated nonparametric item selection procedure 
 

Scale 1 Hi (SE) #vi  Scale 2 Hi (SE) #vi 

Item 1 0.503 (0.016) 0  Item 4 0.387 (0.026) 0 

Item 2 0.437 (0.019) 0  Item 7 0.414 (0.024) 0 

Item 3 0.459 (0.016) 1  Item 9 0.459 (0.020) 1 

Item 5 0.336 (0.020) 0  Item 17 0.399 (0.024) 0 

Item 6 0.345 (0.021) 1  Item 18 0.413 (0.023) 0 

Item 8 0.519 (0.015) 0  Item 19 0.411 (0.023) 1 

Item 10 0.390 (0.020) 4     

Item 11 0.439 (0.020) 1     

Item 12 0.354 (0.020) 2     

Item 13 0.474 (0.016) 1     

Item 14 0.406 (0.018) 0     

Item 15 0.324 (0.021) 5     

Item 16 0.373 (0.023) 1     

Item 20 0.444 (0.019) 0     

Note. Hi = scalability coefficient; SE = standard error; #vi = number of violations of monotonicity. 

 

 

Nonparametric Assessment of the Unidimensionality of the Subscales 

 

Until now, we have only contrasted the actual assignment of items with the results of a non-

parametric item selection procedure. We now head toward a more rigorous approach for the testing 

of test dimensionality. More specifically, we first report the results of a nonparametric procedure, as 

described in Subsection “Application to the MBI,” to check the unidimensionality of each scale and 

then proceed with the fitting of parametric item response models. Figure 2 depicts the relative fre-

quencies of conditional covariance sign violations for each subscale of the MBI. As can be seen from 

Figure 2, the nonparametric check for unidimensionality casts doubt on the unidimensionality of the 

EE and of the DP subscales. As already emphasized in Subsection “Application to the MBI,” if a 

unidimensional IRT model holds, then all pairwise conditional item covariances need to be nonnega-

tive — this follows from Lemma 2 in Lehmann (1966) and an inequality of Shea (1979); see also 

Holland & Rosenbaum (1986) and Rosenbaum (1984). Now, given the large amount of computable 

covariances, some are expected to be negative by chance (due to sampling error). However, a pro-

portion of above 15% for Items 2, 16, and 20 for the EE as well as for the last item of the DP seems 

very questionable. In contrast, the results for the PA are of no severe concern (all frequencies lie be-

low 10%; Items 4 and 21 exhibit the highest amount of violations: 7-8%). In conjunction with the 
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scales resulting from the automated item selection procedure, it can however also be noted that this 

check for unidimensionality reveals violations. For example, Items 2, 5, 12, and 20 of Scale 1 each 

show relative frequencies of approximately 15%. On the other hand, Scale 2 seems satisfactory with 

all relative frequencies below 2%.  

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2 

Percentages of conditional covariance sign violations for the MBI subscales. 

EE = emotional exhaustion; PA = personal accomplishment; DP = depersonalization. 

 

 

Evaluating the Fit of a Graded Response Model 

 

We now look at the model fit of a graded response model to each of the subscales. The 

results of the testing procedure which was outlined toward the end of Subsection “Application to 

the MBI” are reported in Table 5. Note that Table 5A refers to item-specific diagnostics. It reports 

the percentage of datasets (sampled with parameter draws from the posterior) which show more 

extreme conditional covariance sign violations (involving the particular item) than the observed 

dataset. Table 5B does not report item-specific checks but aims at diagnosing violations of the 

normality assumption of the latent variable. For each quantile listed in the left column, the per-

centages of posterior simulated datasets (they, by definition, are all generated using a normal dis-

tribution for the latent variable) that result in more extreme values for the quantile of the total 

sum score, are reported. As can be seen from Table 5A and Table 5B, the item fit for the items of 

the EE subscale is unsatisfactory, in that Item 2 and Item 20 show posterior predictive p-values of 

zero, indicating that not even a single sampled dataset showed more extreme values on the re-

spective item specific test statistic than the observed data. 

For the PA and DP subscales at least one item exhibits a low posterior predictive p-value. 

With respect to the examination of the distribution of the sum score, each subscale shows strong 

deviations when compared to data sampled from a graded response model. The latter may indi-

cate either a misfit of the item step response function or a deviation of the distribution of the la-

tent variable from normality.  

We also evaluated the fit of a graded response model for the two subscales of the auto-

mated item selection procedure. Scale 1 contained five items with a PPV of zero and Scale 2 con-

tained two items with a PPV of zero. Therefore, neither of the two subscales shows satisfactory 

model fit.3 
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TABLE 5A 

Posterior predictive p-values (PPV) for the number of conditional covariance sign violations 
 

EE  PA  DP 

Item  PPV  Item  PPV  Item  PPV 

Item 1 0.43  Item 4 0.08  Item 5 0.42 

Item 2 0.00  Item 7 0.48  Item 10 0.73 

Item 3 0.16  Item 9 0.51  Item 11 0.37 

Item 6 0.43  Item 12 0.48  Item 15 0.23 

Item 8 0.55  Item 17 0.51  Item 22 0.08 

Item 13 0.11  Item 18 0.30    

Item 14 0.10  Item 19 0.01    

Item 16 0.51  Item 21 0.27    

Item 20 0.00       

Note. PPV = posterior predictive p-values; EE = emotional exhaustion; PA = personal accomplishment; DP = de-

personalization.  

 

 
TABLE 5B 

Posterior predictive p-values (PPV) for the quantiles of the sum score 
 

Quantiles  
EE PA DP 

PPV PPV PPV 

0.1 0.01 0.13 0.00 

0.2 0.04 0.00 0.02 

0.3 0.03 0.00 0.00 

0.4 0.04 0.00 0.02 

0.5 0.07 0.00 0.00 

0.6 0.06 0.00 0.00 

0.7 0.02 0.01 0.00 

0.8 0.03 0.02 0.02 

0.9 0.04 0.01 0.30 

Note. PPV = posterior predictive p-values; EE = emotional exhaustion;  

PA = personal accomplishment; DP = depersonalization. 

 

 

Confirmatory Factor Analysis 

 

For the sake of completeness, we also report the results of CFA for a three-factor model 

with the postulated item structure (to ensure identifiability one can either fix the variances of the 

latent factors or the loadings of the first items of the respective subscales) and unrestricted covar-

iances between the factors. The confidence interval for the root mean square error of approximation 

(RMSEA) value was [0.078, 0.086] indicating misfit of the model. In addition, we have standardized 

root mean square residual (SRMR) = .087 and comparative fit index (CFI) = .842 (checking the uni-

dimensionality of each subscale separately did also not result in a satisfactory model fit). 
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DISCUSSION  

 

We analyzed the structure of the MBI scale within a well-defined population of physi-

cians, a population wherein the phenomenon of burnout is quite common and highly relevant. 

Based on the results of the IRT analysis we may conclude that the postulated factor structure of 

the MBI is questionable — at least within the underlying population our sample refers to. First of 

all, the fit of a graded response model was rejected for all subscales (as well as the fit of the ordi-

nary linear factor analysis model). Although this does not necessarily imply a deviation from 

unidimensionality of the subscales (as the rejection could just be based on item step response 

functions deviating from probit/logistic/linear shape), some evidence via the use of flexible non-

parametric approaches has been provided to even question a common metric for the items of each 

subscale. One further key advantage of this nonparametric check is that it enables an evaluation 

of the measurement instruments (i.e., the items) which is not distorted by any (potentially wrong) 

assumptions of normality of the latent variable (Holland & Rosenbaum, 1986; Rosenbaum, 

1984). As can be seen by inspection of Table 5B, a violation of the normality assumption is not 

implausible — thus, it is even more important to scrutinize the results from the view of nonpara-

metric IRT. In fact, if a scale passes the nonparametric check then — although specific paramet-

ric models may fail to fit — ordering of the subjects with respect to the simple sum score is justi-

fied (a detailed account of this ordering property can be found in Hemker, Sijtsma, Molenaar, & 

Junker, 1997). Based on the results depicted in Figure 2, the general unidimensionality hypothe-

sis seems questionable as there are significant proportions of negative conditional covariance 

pairings (the PA subscale showing perhaps the least severe violations). Note that this sort of vio-

lation is quite a severe violation as it implies the following: stratify the population according to 

the performance on an item (say: “Working too hard”). Then choose one stratum (the units within 

each stratum show the same response on the item “Working too hard”) and calculate within this 

stratum the correlation between the responses on two additional items (say: “Feel used up” and 

“Feel frustrated”). Then the indicated violation, that is a negative conditional covariance, implies 

that within the stratum those physicians who are feeling more frustrated are feeling less used up. 

Of course, overall, that is unstratified, there is a positive correlation between the two items. How-

ever, conditioning on the performance on one item, eliminates/reverses this relationship. The lat-

ter phenomenon is also known under the label “Simpsons paradox” (see Agresti, 2002) and must 

not occur if the items of the scale are supposed to measure a common construct (all correlations 

— whether conditional or unconditional — must show the same sign; see Holland & Rosenbaum, 

1986). Moreover, if one takes into consideration the additional aspect of discriminative power (a 

concept which is not directly related to the dimensionality issue) then at least two items (Items 21 

and 22) show quite unsatisfactory values — casting doubt on their usefulness — even if they 

were fitting within a unidimensional framework. 

The application of a nonparametric item selection procedure (Straat et al., 2013) did re-

sult in just two scales (with basically the EE and DP subscales collapsed into a single scale). This 

is in accordance with some previous results which noted a high correlation between two factors 

within the three-dimension CFA model or which directly showed that a third factor is superfluous 

(de Vos et al., 2016). However, the results of this procedure should be interpreted with caution as 

there is no rigorous control of strict unidimensionality within this automated item selection pro-

cedure (the mere fact that each pairwise scalability coefficient is nonnegative is necessary but far 
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from being sufficient for the hypothesis of unidimensionality to hold (see Rosenbaum, 1984). In 

fact, only Scale 2 looks promising as Scale 1 did not withstand the conditional covariance check. 

Overall, we may conclude that there is ample and robust evidence — from four different approach-

es (conditional covariance approach, Mokken scale analysis, graded response model testing, and to 

some extend even the CFA framework) — that the presumed scale structure does not hold. 

Indeed, in many studies which employed the traditional CFA approach, an acceptable 

model fit of the three-factor structure could only be achieved by either a) allowing for correlated 

measurement errors (i.e., violating the fundamental principle of local independence); b) eliminat-

ing items; or c) allowing for substantial deviations from simple structure. Moreover, there seems 

to be a lack of consistency (see Loera et al., 2014) in that, for example, the items which were 

eliminated in one study, were retained in another study. Of course, this points to substantial sam-

ple and population dependency of the properties of the scale. In fact, to the authors’ knowledge 

there has not been a single study which tested and confirmed measurement equivalence of the 

MBI between different populations in a strict sense. Most studies addressed the consistency of 

the number of underlying factors, a much weaker criterion of comparability than measurement 

equivalence. 

As already mentioned in the introduction, only a rather limited number of studies used 

the IRT paradigm instead of the CFA/CTT framework. Thus, comparisons of our results are 

somewhat limited in this regard. In our opinion, the best reference regarding the implications of 

IRT is the dissertation of Periard (2016) because it i) provides an in-depth analysis of the MBI 

using parametric IRT models and the concept of item and test information curves; ii) it relies on a 

very large sample size. The main conclusion, which is consistent with our findings, is that the 

three subscales of the MBI should not be used for scoring and that the traditional three-factor 

model is inappropriate.  

Before concluding the discussion referring to test dimensionality it is important to point 

out our focus on testing unidimensionality of each subscale rather than fitting a common three-

dimension joint model. This approach is justifiable by the following key observation: if a three-

dimension model with the proposed simple structure (i.e., each item is assigned to exactly one 

dimension) holds, then three separate unidimensional models need also hold. That is, the unidi-

mensionality of each subscale is necessary for the existence of the presumed three-dimension 

model. If violations at the level of the subscales can be pointed out, then a fortiori the proclaimed 

higher dimensional model does not hold. The check of the sign of conditional covariances pro-

vides the most important observation with respect to this, as it rests on minimal assumptions (i.e., 

any undimensional model, regardless of the precise model specification, needs to pass this 

check). 

The conducted analyses also attempted to look at modified versions of the subscales in 

order to arrive at unidimensional scales. However, as already noted, the first scale of the auto-

mated item selection procedure does not pass the required checks — in fact, manifest monotonic-

ity, conditional covariances, and the graded response posterior predictive check all indicate viola-

tions of similar size as already noted for the EE subscale. Scale 2 does much better in this re-

spect: only the graded response model fit fails. Now, a comparison of Table 4 with the original 

setup of the MBI subscales shows that Scale 2 is basically a reduced PA subscale. The scale is 

reduced by exactly those two items exhibiting the most severe violations of manifest monotonici-

ty as depicted in Table 3. Thus, it might be stated that a reduced PA subscale passes nonparamet-
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ric unidimensionality checks and therefore allows for the ordering of subjects with respect to 

their sum score. We note that an analogous attempt to improve the fit of the DP subscale by elim-

ination of the last item does not work (e.g., no substantial reduction in relative frequencies of 

conditional covariance sign).   

As the question of predictive validity is concerned, we note — in conjunction with the re-

sults of West et al. (2012) — that one item of the whole EE subscale accounts for 0.792 = 62,4% 

of the total rest score variance (see Table 2). It appears that just asking whether or not a person 

feels burned-out accounts for more than half of the combined variation provided by the sum score 

of the remaining items of the EE subscale. In fact, the explained variance exceeds 82% by just 

using the first and the fifth item (i.e., Item 1 and Item 8). When combined with the hypothesis 

that item scalability decreases toward the end of the questionnaire, one could make a valid point 

for a reduction of the scale.  

The preceding remarks only addressed the cross-sectional aspect of the measurement of 

burnout, where psychometric limitations of the scale were pointed out. The question concerning 

the longitudinal measurement of burnout was not addressed (and cannot be addressed with the 

current dataset). However, as in many diagnostic settings the scale will ultimately be used to 

highlight time-dependent development of burnout — we finally want to emphasize an important 

additional pitfall which needs to be avoided when employing the MBI for these purposes. As Mo-

lenaar (2004) clearly demonstrated, the usual psychometric analysis of a scale only addresses the 

level of interindividual comparisons and — apart from some rare exceptions (ergodic processes) 

— does not have any bearing on the psychometric structure in terms of intraindividual compari-

sons (closely related results are discussed in Steingen, 2013). That is, even if the factor structure 

of the MBI were three dimensional (on an interindividual level), there is no guarantee that the 

same factors (and even the same number of factors) could be identified when considering longi-

tudinal data (i.e., data wherein individual trajectories are provided). This practically important 

step of extending the analysis to the intraindividual level is seldom considered and should, in our 

opinion, be one focus of further research. 

 

 

NOTES 

 
1. If a scale adheres to the unidimensionality hypothesis then it can be shown that all scalability coeffi-

cients are nonnegative. The rule reflects this property but also adds the requirement that H ≥ 0.3, so that 

unidimensional scales with a large amount of “noise” are also deemed as inappropriate — although 

technically speaking the unidimensionality hypothesis would hold). 

2. Zhu and Stone (2011) show via simulation that in general, statistics which are focused on pairwise as-

sociation are more appropriate for checking departures from unidimensionality than item-level statistics 

such as item-total correlations. 

3. Note that although a method based on Bayesian posterior predictive p-values is conceptually very dif-

ferent from the classical frequentistic approach, results of simulation studies (Zhu & Stone, 2011) indi-

cate that an application of this Bayesian method does not result in increased type 1 error rates — in fact, 

we also ran a small simulation of n = 100 datasets generated according to a graded response model 

(with test length equal to nine and varying parameter values) and noticed a total of 54 rejections out of 

900 (= 9 × 100) conducted tests, when using the conventional α = 5% threshold.  
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APPENDIX  
 

Range Restrictions of Correlation Coefficients Induced by Differing Marginals: 

An Illustration Via Binary Random Variables 

 

In this Appendix we illustrate the restriction in the correlation coefficient which is im-

posed solely by differences in marginal distributions. We confine ourselves to the case of two bi-

nary random variables — but the qualitative conclusion generalizes to other settings, for exam-

ple, item-total correlation of ordinal variables, as well. Thus, the purpose of this example is to 

demonstrate that items whose item difficulties are extreme relative to the other items of the scale 

will automatically be deemed as inappropriate items when judged by the ordinary item-total cor-

relation. Suppose now, that we are given the following general cross tabulation of two binary 

random variables: 

 
TABLE A1 

General cross tabulation of two binary random variables 

 

X\Y Y = 1 Y = 0 X-Marginal 

X = 1 P(X = 1, Y = 1) P(X = 1, Y = 0) a 

X = 0 P(X = 0, Y = 1) P(X = 0, Y = 0) (1-a) 

Y-Marginal b (1-b) 1 

 

 

Without loss of generality let a < b. Then the following entries for the cross table maxim-

ize the correlation between X and Y (while maintaining the marginal distribution): 

 
TABLE A2 

Cross tabulation with maximal correlation for the given marginal distributions in A1  

(subject to a < b). 

 

X\Y Y = 1 Y = 0 X-Marginal 

X = 1 a 0 a 

X = 0 b-a 1-b (1-a) 

Y-Marginal b (1-b) 1 

 

 

That is, for any two binary random variables X, Y with given marginal probabilities P(X = 

1) = a < b= P(Y = 1) the maximal correlation is given by: 

 

 

 

 

As an example, let a = 0.5, b = 0.9, then insertion of these values in the above formula 

shows that: 

ρ𝑋,𝑌  ≤  
1

3
 


