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To date, missingness has been investigated at the level of the entire sample of respondents, on data 
samples deriving from a unique mechanism (either MCAR, or MAR, or MNAR). In this work, miss-
ingness is investigated at the level of the individual respondent, on data samples consisting of patterns 
of missingness deriving from different mechanisms. Five tests (runs test, Wilcoxon rank sum test, 
point-biserial correlation, t-test, standardized outfit) are used for detecting whether the particular pat-
tern of missingness displayed by an individual respondent has been generated by a random (MCAR, 
MAR) or nonrandom (MNAR) mechanism. For all the tests, the rejection of the null hypothesis for a 
particular pattern is taken as an indication that the pattern might have been caused by a nonrandom 
mechanism. A simulation study and a real data application example showed that Wilcoxon rank sum 
test and t-test outperform the other tests in identifying the MNAR patterns. 
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Missing data are a common problem in a variety of measurement settings, including responses to 

items on both cognitive and affective assessments. There are many reasons underlying missing data, often 

unknown to researchers. The respondent may have missed one or more items either inadvertently or be-

cause he/she did not know the answer and was afraid to guess. Again, the respondent may have become 

bored while filling in the questionnaire or the test, and left some items unanswered. Moreover, he/she may 

have felt some items to be embarrassing, threatening, or intrusive to privacy, thus preferring to skip them. 

Following Rubin (1976), missing data are said to be missing at random (MAR) if the cause of 

missingness does not depend on the missing values themselves, but depends on another variable included 

in the analysis. If missingness is also unrelated to any variable in the analysis, the missing data are defined 

missing completely at random (MCAR). Missing data are missing not at random (MNAR) if nonresponse 

depends on the missing values themselves. When missingness is MCAR, it is ignorable because the ob-

served data are a random sample from the complete data sample (Little & Rubin, 1987). Missingness is al-

so ignorable when it is of the MAR type because, in this case, the observed data are a random sample from 

subsamples of the complete data. For instance, most women may refuse to answer an item that is offensive 

or sensitive to women but that does not affect men in the same way. Thus, the distribution of item scores 

will be different between women and men, but it will be the same for respondents and nonrespondents in 

both groups. Missingness of the MNAR type is nonignorable because the observed data are not a random 

sample from the complete data sample or from subsamples. 
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When missing data occur for reasons beyond our control, we must make assumptions about the 

mechanism that caused them. This is important because the adoption of less than optimum strategies for 

handling the missing values can lead to biased estimates, distorted statistical power, and invalid conclu-

sions (Acock, 2005; Osborne, 2013). MCAR or MAR data can be problematic from a power perspective 

(in that sample size decreases and standard errors increase), but they would not potentially bias the results 

(the available data are representative of the population). Conversely, MNAR data could potentially be a 

strong biasing influence (Rubin, 1976; Sijtsma & van der Ark, 2003; Stuart, Azur, Frangakis, & Leaf, 

2009). For instance, if some items are more often missed by worst-performing students than by best-

performing students, there would be an overestimation of average performance, due to more missing data 

from lower-performing students, and an underestimation of the standard deviation, due to less dispersion at 

the lower extreme of the distribution (Osborne, 2013). 

The inappropriate treatment of missing data could lead researchers to draw invalid conclusions about 

the nature of relationships existing in the population. Stuart et al. (2009) provided interesting examples in the 

context of a national health survey. In one example, eliminating cases with missing data led to the conclusion 

that individuals who start smoking earlier in life are more emotionally strong and less functionally impaired 

than individuals who start smoking later — a finding that is contrary to research. In another example, individ-

uals who drink more had fewer internalizing problems (e.g., depression, anxiety) — another finding that is not 

in line with research. After appropriate handling of missing data, these relationships were more consistent 

with the literature. Osborne (2013) analyzed data from a large educational longitudinal study and showed that 

the strong positive correlation between math achievement scores and reading scores (r = .77) became weak 

negative (r = –.20) after a MNAR decimation mechanism was applied to the original data sample. 

In practical situations, the researcher has to decide whether the missingness at hand is ignorable or 

not on the basis of the pattern of missingness in the data. Huisman (1999) proposed a statistical test for in-

vestigating whether missingness in a data sample is random or not. A Pearson’s Chi-square statistic is 

computed, which compares the frequency counts of the observed missing scores with that expected under 

the assumption of random missingness. Other tests provide information about missingness at the item level 

(see, e.g., Osborne, 2013). A missingness variable pertaining to a certain item (0 = missed, 1 = responded) 

can be correlated with substantive or ancillary variables (e.g., socioeconomic status, test scores). A t-test 

can be performed to investigate if individuals with missing data on one variable are significantly different 

on other similar variables. It is worth noting that, to date, the analysis of missingness has been carried out 

at the level of the entire sample of respondents, on data samples deriving from a unique missing mecha-

nism (MCAR, MAR, or MNAR). 

The present work represents a sharp departure from the traditional way missingness is investigat-

ed. A first novelty is that missingness is studied at the level of the individual respondent, instead of being 

considered at the level of the entire sample of respondents. The particular pattern of missingness displayed 

by a respondent is analyzed in order to infer if it has been caused by a random or nonrandom mechanism. 

Such an analysis is useful whenever we want to make proper decisions at the level of the individual re-

spondent. For instance, examinees might skip the items that they are not able to respond. If this is the case, 

recoding the missing responses as incorrect would be appropriate (Weeks, von Davier, & Yamamoto, 

2016). However, omitting does not only depend on examinee’s ability, but it also involves a “dimension of 

temperament” (Lord, 1983). For instance, in particular conditions, examinees with low self-esteem or self-

efficacy might omit responses to items that otherwise they may have been able to respond (Matters & Bur-

nett, 2003). If this is the case, recoding the missing responses as incorrect responses would introduce a 

negative bias. The biases resulting from an inappropriate recoding of missing responses might cause un-



 

 

Anselmi, P., Robusto, E., &  

Cristante, F. 
Analyzing missingness at an individual  

respondent level 

TPM Vol. 25, No. 3, September 2018 

379-394    

© 2018 Cises 

 
 

381 

trustworthy test results and detrimental effects on the choices that are based on them (e.g., student admis-

sion, personnel selection). After determining that a particular pattern of missingness was caused by a ran-

dom or nonrandom mechanism, the researcher can select the appropriate analysis method. 

A second novelty of the present work is the analysis of mixed data samples, each one consisting of 

patterns of missingness deriving from different mechanisms (i.e., patterns deriving from a MCAR mecha-

nism, patterns deriving from a MAR mechanism, and patterns deriving from a MNAR mechanism). There 

can be situations in which it is reasonable to assume that most of the patterns of missingness in the data 

sample derive from the same mechanism, as well as situations in which such an assumption can not be 

made. An example of the former case is high-stakes achievement tests, in which missing data might be 

mostly due to low-ability respondents who skip the items that they are not capable of solving. Thus, the 

patterns of missingness are mostly caused by a nonrandom mechanism. An example of the latter case is 

large-scale educational surveys (e.g., PIRLS, PISA, TIMSS), in which students do not receive individual 

scores and the outcomes of the assessment are inconsequential for them. The low-stakes nature of these 

surveys, together with individual differences in the way of completing the task (achievement motivation, 

perceived self-efficacy, commitment; see, e.g., Matters & Burnett, 2003), might contribute to the ob-

servance of patterns of missingness that derive from a nonrandom mechanism and patterns of missingness 

that derive from a random mechanism. It might be very difficult to make assumptions about the relative 

frequency of these two types of patterns of missingness in the overall data sample. 

The article presents five tests for analyzing the specific pattern of missingness displayed by an in-

dividual respondent: runs test, Wilcoxon rank sum test, point-biserial correlation, t-test, and standardized 

outfit. These tests are common in classical testing theory and item response theory and, to our knowledge, 

they have never been used to analyze missingness at the level of the individual respondent. The five tests 

are computed on the pattern of missingness displayed by the respondent. For all the tests, the null hypothe-

sis specifies that the mechanism underlying the pattern of missingness is random. The rejection of the null 

hypothesis suggests that the pattern might have been caused by a nonrandom mechanism. 

 

 

TESTS FOR ANALYZING THE PATTERN OF MISSINGNESS DISPLAYED BY AN INDIVIDUAL RESPONDENT 

 

The five tests presented in this section are: runs test, Wilcoxon rank sum test, point-biserial corre-

lation, t-test, and standardized outfit. Some notation is introduced here, that will be used to describe the 

tests. Let “R” denote the items that were responded by the individual, and let “M” denote the items that 

were missed by him/her. Let NR and NM be respectively the number of items that were responded and 

missed by the individual, and let N = NR + NM be the total number of items. A terminology will be used that 

refers to cognitive assessments (e.g., easy and difficult items, correct and incorrect responses). However, 

the presented tests can be applied also in other assessment contexts.  

 

 

The Runs Test 

 

The runs test (Bradley, 1968; Wald & Wolfowitz, 1940), also called Wald-Wolfowitz test, is a 

nonparametric statistical test that checks the null hypothesis that a sequence of two-valued elements is ran-

dom. It is based on the computation of the number of runs in the sequence, each of which is a segment of the 

sequence consisting of consecutive equal elements. For instance, the 20-element long sequence 

“AAAABBBAAABBAAAAAAAA” is characterized by 5 runs, 3 consisting of “A” and 2 consisting of “B.” 
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In the present study, runs are computed on the sequence of the items that were responded “R” or 

missed “M” by an individual respondent, after the items have been ordered by increasing difficulty. Item 

difficulty is represented by the proportion of incorrect responses to the item over the number of responses 

given to that item. Let us consider the following two sequences on a 20-item long test, both characterized 

by 9 missing responses: 

 

RRMRRRMMRRMMRMRMMRRM 

RRRRRRRRMRMMRRMMMMMM 

 

 

 

 

The first sequence (12 runs) is assumed to be more probable than the second sequence (6 runs) 

under the null hypothesis that it was produced in a random manner.  

Under the null hypothesis, the number of runs in a sequence of N items is a random variable 

whose conditional distribution, given the observation of NR responded items and NM missed items, is ap-

proximately normal, with 

 

 
and  

 
 

These parameters do not assume that responded and missed items have the same probability of oc-

curring, but only assume that they are independent and identically distributed. If the number of runs is sig-

nificantly lower than expected, the null hypothesis that the sequence is produced in a random manner may 

be rejected. In the example at hand, μ𝑟 = 10.9 and σ𝑟
2 = 4.64 for both sequences. Considering a Type-I 

error probability of .05, the null hypothesis is retained for the first sequence z = (12 – 10.9) / √4.64 = 51, p 

= .70) and rejected for the second sequence (z = −2.27; p < .05). 

 

 

The Wilcoxon Rank Sum Test 

 

The Wilcoxon rank sum test (Gibbons, 1985; Hollander & Wolfe, 1973) is a nonparametric statis-

tical test of the null hypothesis that two samples of observations derive from populations with equal values. 

The test is based upon ranking all the observations from the two samples, without regard to which sample 

they belong to. The statistic W is the sum of the ranks for the observations from one of the two samples. 

In the present study, the Wilcoxon rank sum test is computed on the sequence of responded and 

missed items, after all the items have been sorted by increasing difficulty. Let us consider the following 

sequence of responded “R” and missed “M” items on a 20-item long test: 

 

 Less difficult item  More difficult item 

Item: R R R R R R R M R R M M R M R M M R R M 

Ranks: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

μ𝑟  = 

2 𝑁R  𝑁M 

𝑁
 + 1, 

σ𝑟
2 =

2 𝑁R  𝑁M (2 𝑁R  𝑁M − 𝑁)

𝑁2(𝑁 − 1)
 . 

(1) 

(2) 

Less difficult item    More difficult item 

http://en.wikipedia.org/wiki/Conditional_distribution
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The example at hand represents a situation in which there are not items with the same difficulty 

level. When this is not the case, the same average rank is assigned to all the items with the same difficulty. 

The sum of the ranks for the missing responses is WM = 98. 

Under the null hypothesis, the statistic WM is approximately normally distributed, with 

 

 

and 

 

 

If the statistic WM is significantly larger than expected, the null hypothesis that the responded and 

missed items do not differ in difficulty may be rejected. In the example at hand, μ𝑊M = 73.50 and σ𝑊
2  = 

159.25. Considering a Type-I error probability of .05, the null hypothesis is rejected (z = 

(98 − 73.50) √159.25 = ⁄ 1.94; p < .05).  

 

 

 

 

Point-Biserial Correlation 

 

The point-biserial correlation coefficient (see, e.g., Glass & Hopkins, 1996) is a statistic used 

when one variable is continuous and the other variable is dichotomous. In the present study, the continuous 

variable is represented by the number of missing responses to each item across the entire sample. The 

point-biserial correlation coefficient rpb is computed as 

 

 

where 𝑀̅M and 𝑀̅R are respectively the average number of missing responses to the items that were missed 

and responded by the individual, and s is the sample standard deviation of the number of missing responses 

to all the items. The statistic rpb expresses the strength of the association between the response behavior of 

the individual (i.e., response or omission to an item) and that exhibited by the overall sample. 

A formal test of the null hypothesis that the correlation is 0 in the population can be accomplished 

by computing the statistic 𝑡pb = 𝑟pb√(𝑁 − 2) (1 − 𝑟pb
2⁄ ), which has an approximate Student’s t distribution with 

degrees of freedom equal to N – 2. The rejection of the null hypothesis suggests that the response behavior 

of the individual is consistent with that exhibited by the entire sample. 

 

 

T-Test 

 

It is a parametric statistical test of the null hypothesis that two samples of observations derive 

from populations with equal means. In the present study, the t-test is used to compare the average difficul-

ties of the items that were responded or missed by each individual. The rejection of the null hypothesis 

suggests that responded and missed items differ in difficulty. 

μ𝑊M
=  
𝑁M  (𝑁 + 1)

2
 , 

σ𝑊
2 =  

𝑁R  𝑁M  (𝑁 + 1)

12
 . 

𝑟pb =
𝑀̅M − 𝑀̅R

𝑠
 
𝑁M − 𝑁R

𝑁2
 , 

(3) 

(4) 

(5) 
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If the responded and missed items derive from populations with unequal variance, the statistic t is 

computed as 

 
 

where 𝐷̅M and 𝐷̅R are respectively the average difficulties of the missed and responded items, and sM and sR 

are their sample standard deviations. Under the null hypothesis, the statistic t has an approximate Student’s 

t distribution with a number of degrees of freedom given by Welch-Satterthwaite’s approximation (Sat-

terthwaite, 1946; Welch, 1947). If the responded and missed items derive from populations with equal vari-

ance, the standard deviations sM and sR in the previous equation are replaced by the pooled standard deviation  

 

 

and the statistic t has Student’s t distribution with N – 2 degrees of freedom. 

 

 

Standardized Outfit 

 

The outfit mean-square (Wright & Masters, 1982) is a data-model fit statistic widely used in item 

response theory, which is an important theoretical framework for cognitive and personality assessment 

(see, e.g., Anselmi, Vidotto, Bettinardi, & Bertolotti, 2015; Colledani, Robusto, & Anselmi, 2018; Da Dalt 

et al., 2013, 2015; Thomas, 2011; Zanon, Hutz, Yoo, & Hambleton, 2016). Based on the comparison be-

tween observed and expected responses, it has the form of a χ2 statistic divided by its degrees of freedom. 

The expected value is 1. Values smaller than 1 indicate that the observations are too predictable (overfit), 

whereas values greater than 1 indicate unpredictability (underfit; Wright & Linacre, 1994).  

In the present study, the outfit statistic is used to compare the actual response behavior of an indi-

vidual respondent (i.e., response or omission to each item) with that expected according to the simple lo-

gistic model (SLM; Rasch, 1960). To this purpose, the SLM is estimated on a K × I binary matrix, where 

the entry cell rki is 1 if respondent k provided a response to item i, and 0 otherwise. The analysis results in a 

parameter βk for each respondent k, and a parameter γi for each item i. The larger the value of βk, the greater 

the propensity of k to respond to the items, whereas the larger the value of γi, the greater the tendency of i 

to be missed. According to the SLM, the greater the tendency of i to be missed and the lower the propensi-

ty of k to respond, the greater the probability that k misses i. The probability that k misses i equals .50 when 

βk = γi, and exceeds .50 when βk < γi. 

Let us consider the following two sequences of responded “R” and missed “M” items, on a collec-

tion of 20 items ordered by increasing tendency to be missed: 

 

βk 

RRRRRRRRRRRRRMMMMMMM 

RRMRRMRRMRRMRRMRMMRR 

 

 

𝑡 =
𝐷̅M − 𝐷̅R

 
𝑠M

2

𝑁M
+
𝑠R

2

𝑁R

 , 

𝑠pooled =  
(𝑁M − 1)𝑠M

2 + (𝑁R − 1)𝑠R
2

𝑁 − 2
 , 

Lower γ                                                               Larger γ 

(6) 

(7) 
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The first sequence is too deterministic: k systematically responded to all the items with γ lower 

than βk and missed all the items with γ larger than βk. Conversely, the second sequence is too random: k re-

sponded or missed the items regardless of the values of βk and γ. The outfit mean-square of the first se-

quence is expected to be smaller than 1, whereas that of the second sequence is expected to be larger than 1.  

The outfit mean-squares can be converted into normally distributed z values by means of the Wil-

son-Hilferty cube root transformation (Schulz, 2002; Wilson & Hilferty, 1931). This allows the testing of 

the null hypothesis that, on the whole, the response behavior displayed by the individual does not differ 

from that expected. An outfit z value significantly smaller than 0 for a particular pattern of missingness 

suggests that the pattern might have been caused by a nonrandom mechanism. 

 

 

A SIMULATION STUDY 

 

Several mixed data samples were simulated, each one consisting of complete response patterns, 

MCAR, MAR, and MNAR patterns. The study aims to investigate whether the five tests allow the distinc-

tion between the patterns of missingness deriving from a random mechanism (MCAR, MAR) and those 

deriving from a nonrandom mechanism (MNAR).  

 

 

Data Generation 

 

The mixed data samples were generated using the following three-step procedure: 

1. Simulation of the data sample with complete response patterns;  

2. Random splitting of the data sample into four groups, and application of a different decima-

tion mechanism (MCAR, MAR, or MNAR) to three of the four groups; 

3. Merging of the four groups into the mixed data sample. 

The procedure used for generating the mixed data samples is new, whereas the procedures used 

for simulating the three decimation mechanisms are well known in the literature (Finch, 2008; Hardouin, 

Conroy, & Sébille, 2011; Hohensinn & Kubinger, 2011; Holman & Glas, 2005). 

The data samples with complete dichotomous (0, 1) response patterns were simulated using the 

SLM (Rasch, 1960). According to this model, the expected probability pki that simulee k provides a correct 

response to item i is given by: 

 

 

 

where θk is the latent trait value (ability) of simulee k, and δi is the scale value (difficulty) of item i. The 

expected probability pki that k provides a correct response to i equals .50 when θk = δi, and exceeds .50 

when θk > δi. All the data samples consisted of 100 items, whereas they differed in the number of simulees 

(K = 100, 200, 500, 1,000, 5,000, and 10,000). The scale values δ were randomly drawn from a uniform 

distribution defined in the interval [−3.5; 3.5]. The latent trait values θ were randomly drawn from a normal 

distribution with μ = 0 and σ = 1.5. A pseudorandom uniform value uki ∈ [0, 1] was generated for each 

simulee k and each item i. The response of k to i was correct (1) if uki ≤ pki, and incorrect (0) otherwise.  

Each data sample was randomly split into four groups, denoted as complete responses (CR), 

MCAR, MAR, and MNAR.  

𝑝𝑘𝑖 =
exp(θ𝑘 − δ𝑖)

1 + exp(θ𝑘 − δ𝑖)
 (8) 



 

 

Anselmi, P., Robusto, E., &  

Cristante, F. 
Analyzing missingness at an individual  

respondent level 

TPM Vol. 25, No. 3, September 2018 

379-394    

© 2018 Cises 

 
 

386 

The response patterns of simulees in the CR group did not undergo any decimation mechanism. 

The response patterns of simulees in the MCAR group underwent a decimation mechanism that randomly 

replaced observed responses with missing responses. To simulate the different individual propensity to 

omit responses, the simulees in the MCAR group were randomly divided into three subgroups of equiva-

lent size, and a missing response probability equal to .10, .30, or .50 was assigned to each subgroup. A 

pseudorandom uniform value [0, 1] was generated for each simulee and each item and, if it resulted to be 

lower than or equal to the assigned missing response probability, the item response was turned into a mis-

sing response. In the sequel, the probabilities .10, .30, and .50 will denote low, medium, and high missing 

propensity, respectively. 

The response patterns of simulees in the MAR group underwent a decimation mechanism that made 

the missing response probability depending on the simulee’s proportion of correct responses. Let pk be the 

proportion of correct responses given by simulee k on the complete response pattern. The probability mk that k 

provides a missing response was assumed to be exponentially decreasing with a higher pk according to the 

function: mk = mt × exp(−2 × pk). The value mt represents the maximum of mk, reached at pk = 0. The simulees 

in the MAR group were randomly divided into three subgroups of equivalent size, to each of which a different 

mt value was assigned. The mt values were chosen to produce, in the three MAR subgroups, overall propor-

tions of missing data that largely resembled those simulated in the three MCAR subgroups (i.e., .10, .30, .50). 

A pseudorandom uniform value [0, 1] was generated for each simulee and each item and, if it resulted to be 

lower than or equal to mk, the item response was turned into a missing response. 

The response patterns of simulees in the MNAR group underwent a decimation mechanism that 

made the missing response probability depending on both the simulee’s latent trait θ𝑘 and the item’s scale 

value δ𝑖. It is worth noting that, in the MCAR and MAR groups, the missing response probability did not 

depend on the item. Let pki be the expected probability that simulee k provides a correct response to item i, 

as computed by an application of Equation (8). The probability mki that k misses i was assumed to be expo-

nentially decreasing with a higher pki according to the function: mki = mt × exp(−2 × pki). The simulees in 

the MNAR group were randomly divided into three subgroups of equivalent size. The mt values assigned 

to the three MNAR subgroups were chosen to produce overall proportions of missing data that largely re-

sembled those simulated in the MCAR and MAR subgroups (i.e., .10, .30, .50). A pseudorandom uniform 

value [0, 1] was generated for each simulee and each item and, if it resulted to be lower than or equal to 

mki, the item response was turned into a missing response.  

The four groups (CR, MCAR, MAR, MNAR) were then merged into the mixed data sample. A to-

tal of 12 scenarios was generated that differed for the total number of simulees (K = 100, 200, 500, 1,000, 

5,000, 10,000) and for the proportion of CR, MCAR, MAR, MNAR patterns in the mixed data sample — 

[CR = MCAR = MAR = MNAR = .25], [MNAR = .50, MCAR = MAR = .125, CR = .25]. In the scenarios 

[CR = MCAR = MAR = MNAR = .25], half of the missing patterns in the data sample derived from a ran-

dom mechanism. In the scenarios [MNAR = .50, MCAR = MAR = .125, CR = .25], half of the missing 

patterns in the data sample derived from a nonrandom mechanism. For each scenario, 100 data samples 

were simulated from different values of parameter θ and δ (the MATLAB codes used for the simulations 

and the analyses are available upon request from the first author).  

 

 

Results 

 

Figure 1 reports the results concerning the scenario [CR = MCAR = MAR = MNAR = .25] with 

10,000 simulees. For each of the five tests, the bars represent the average proportions of statistically signif-
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icant tests across the 100 simulated samples. The significance of the tests was evaluated by setting the 

Type-I error probability to .05. It is worth recalling that the null hypothesis specified that the mechanism 

underlying a particular pattern of missingness was random. The gray, white, and black bars respectively 

denote simulees with low, medium, and high missing propensity (overall proportions of missing data equal 

to .10, .30, and .50). The striped bars denote all simulees. MCAR, MAR, and MNAR patterns are in the 

upper, medium, and lower diagram, respectively. Comments to Figure 1 are in order. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1 

Average proportions of statistically significant tests (Type-I error = .05) across the 100 simulated samples. 

The null hypothesis specified that the mechanism underlying a particular pattern of missingness  

was random. Scenario [CR = MCAR = MAR = MNAR = .25] with 10,000 simulees. 

 

 

Concerning the MCAR and MAR patterns, the proportion of tests statistically significant largely 

resembled the Type-I error probability of .05. This means that only 5% of these patterns were incorrectly 
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identified as being caused by a nonrandom mechanism. Compared with the other tests, standardized outfit 

showed a stronger propensity in not rejecting the null hypothesis when this was true. The proportion of sta-

tistically significant tests did not vary with the missing propensity and, thus, with the number of missing 

responses in the patterns (on average, 10, 30, and 50 missing responses for simulees with low, medium, 

and high missing propensity, respectively). 

The five tests differed in their propensity to reject the null hypothesis when this was false. Point-

biserial correlation, rank sum test, and t-test correctly identified the largest proportions of MNAR patterns 

as caused by a nonrandom mechanism, followed by runs test and standardized outfit (lower diagram). 

Point-biserial correlation, rank sum test and t-test behaved in an almost identical way. The similar perfor-

mance of rank sum and t-test is explained by considering that both tests are based on a measure (sum of 

ranks for the first test, average for the second test) of the difficulty of the items that were missed and re-

sponded by the simulee. Unlike rank sum and t-test, point-biserial correlation is based on a measure of the 

number of missing responses that the entire sample provided to the items that were missed and responded by 

the simulee. In our simulations, the number of missing responses vehiculated information about item difficulty 

through the MNAR patterns. In these patterns, the probability of observing a missing response increased with 

item difficulty. 

The statistical power of each test increased with the missing propensity and, thus, with the number 

of missing responses in the patterns. For instance, point-biserial correlation, rank sum test, and t-test cor-

rectly identified 52% of MNAR patterns relative to low missing propensity simulees (about 10 missing re-

sponses), and 92% and 97% of MNAR patterns relative to medium and high missing propensity simulees 

(about 30 and 50 missing responses, respectively). 

To investigate the statistical power of the tests in more detail, the patterns of missingness were divid-

ed into nine fractiles based on the number of missing responses (1-10, 11-20, 21-30, 31-40, 41-50, 51-60, 61-

70, 71-80, 81-90; no patterns were observed with more than 90 missings). Results are depicted in Figure 2. 

For point-biserial correlation, rank sum test, and t-test, the proportion of MNAR patterns that were 

correctly identified as being caused by a nonrandom mechanism approximately monotonically increases 

with the number of missing responses. Interestingly, these three statistics correctly identified a percentage 

of MNAR patterns as large as 95%, even when they were characterized by a relatively small number of 

missing responses (little more than 20 responses). A parabolic trend was observed for runs test and stand-

ardized outfit. With respect to runs test, this result is understood by considering that the observed number 

of runs (as such as its expected number) increases with the number of missing responses until the number 

of missing responses reaches half test length, whereas it starts decreasing with a number of missing re-

sponses exceeding half test length. Therefore, the performance of runs test with a few missing responses 

approaches that of the test with many missing responses. With respect to standardized outfit, it should be 

considered that extreme response patterns (in our case, all the items were responded or all the items were 

missed) always fit the SLM perfectly (Linacre, 2009). Therefore, the closer the proportion of missing re-

sponses to 0 or 1, the greater the probability that the standardized outfit approaches 0, so that a nonrandom 

mechanism can not be identified. 

Figure 3 depicts the average proportion of MNAR patterns that, in each scenario, were correctly 

identified as caused by a nonrandom mechanism. Each graph pertains to a different test. Dashed and solid 

lines respectively represent the conditions [CR = MCAR = MAR = MNAR = .25] and [MNAR = .50, MCAR 

= MAR = .125, CR = .25]). The markers “×”, “”, and “” respectively represent low, medium, and high 

missing propensity. The size of the simulated samples is depicted in the x-axis. Comments to Figure 3 are in 

order. 
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FIGURE 2 

Average proportions of statistically significant tests (Type-I error = .05) across the 100 simulated samples. 

The null hypothesis specified that the mechanism underlying a particular pattern of missingness  

was random. Scenario [CR = MCAR = MAR = MNAR = .25] with 10,000 simulees.  

Simulees divided into nine fractiles (the nine bars) based on the number of missing responses. 

 

On the whole, the capability of each test to correctly identify the MNAR patterns as caused by a non-

random mechanism decreased with sample size when the MNAR patterns do not represent the largest part of 

patterns in the sample (dashed lines). When the MNAR patterns represented half of the patterns (solid lines), 

the five tests were largely unaffected by sample size. 

Point-biserial correlation, rank sum test, and t-test outperformed runs test and standardized outfit 

in all conditions of sample size and proportion of MCAR, MAR, and MNAR patterns in the sample. Stand-

ardized outfit turned out to be the worst test.  

Regardless of sample size and proportions of random and nonrandom patterns, rank sum and t-test 

correctly identified more than 90% of MNAR patterns, provided that these patterns did not contain a negli-

gible number of missing responses (lines marked by “” and “”). Point-biserial correlation performed 

worse than rank sum and t-test when there were not many missing responses resulting from a MNAR 
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mechanism — condition [CR = MCAR = MAR = MNAR = .25] with 100 to 200 simulees and low to me-

dium missing propensity. As mentioned above, rank sum and t-test are based on item difficulty, which en-

ters point biserial correlation only indirectly through the number of missing responses. A larger amount of 

data is required for the number of missing responses to vehiculate proper information about item difficulty. 

By applying Huisman’s test (Huisman, 1999), the null hypothesis of random missingness was re-

jected for all the 100 mixed data samples simulated in each scenario, even when the sample size was not 

large (100 simulees) and the proportion of MAR and MCAR patterns was larger than the proportion of 

MNAR (.50 vs. .25). 

 

 

 
 

FIGURE 3 

Average proportion of MNAR patterns correctly identified in each scenario.  

Dashed and solid lines respectively represent the conditions [CR = MCAR = MAR = MNAR = .25]  

and [MNAR = .50, MCAR = MAR = .125, CR = .25]. The markers “×”, “”, and “” respectively  

represent low, medium, and high missing propensity. The size of the simulated samples is in the x-axis. 
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AN EMPIRICAL DATA EXAMPLE 

 

Empirical Data 

 

We used data from the information subtest of the National Intelligence Tests (Haggerty, Terman, 

Thorndike, Whipple, & Yerkes, 1920). An extensive description of the data can be found in Must and Must 

(2014), whereas the data are available at: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10. 

7910/DVN/23791. The information subset consists of 40 items scored as correct (1) and incorrect (0). Fol-

lowing the procedure described by Sijtsma and van der Ark (2003), we selected data from subjects who 

provided complete responses. Thus, the analyzed data sample consists of 311 respondents. From this data 

sample, 100 mixed data samples were created by applying Steps 2 and 3 of the procedure described in the 

simulation study. The proportion of CR, MCAR, MAR, and MNAR patterns was the same for all data 

samples (CR = MCAR = MAR = MNAR = 25). 

 

 

Results 

 

Figure 4 depicts the results concerning the five tests, separately for MCAR, MAR, and MNAR 

patterns. The bars represent the average proportions of statistically significant tests (Type-I error probabil-

ity of .05) across the 100 mixed data samples. The gray, striped, and white bars respectively denote pat-

terns with a number of missings in the intervals 1-10, 11-20, 21-30 (no pattern was observed with more 

than 30 missings).  

Concerning the MCAR and MAR patterns, the proportion of statistically significant tests resem-

bled the Type-I error probability, and did not vary with the number of missing responses in the patterns. 

Compared with the other tests, standardized outfit showed a stronger propensity not to reject the null hy-

pothesis when this was true. Analogous results were observed in the simulation study. 

The five tests differed in their propensity to reject the null hypothesis when this was false. Rank 

sum and t-test correctly identified the largest proportions of MNAR patterns as caused by a nonrandom 

mechanism, followed by point-biserial correlation, runs test, and standardized outfit. We note that rank 

sum and t-test outperformed point-biserial correlation also in condition [CR = MCAR = MAR = MNAR = 

25] of the simulation study, when the sample size resembled that of the empirical data sample (see Figure 

3). The statistical power of each test increased with the number of missing responses in the patterns. For 

instance, rank sum test and t-test correctly identified 70% of MNAR patterns with 11-20 missing respons-

es, and 95% of MNAR patterns with 21-30 missing responses. Analogous results were observed in the 

simulation study (see Figure 2). By applying Huisman’s test (Huisman, 1999), the null hypothesis of ran-

dom missingness was rejected for all the 100 mixed data samples. 

 

 

FINAL REMARKS 

 

In the present work, missingness was investigated at the level of the individual respondent. The 

proposed approach represents a sharp departure from the traditional approach, in which missingness is in-

vestigated at the level of the entire group of respondents. Another novelty of the present work lies in the fea-

tures of the data samples, each one consisting of patterns of missingness caused by different mechanisms.  
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FIGURE 4 

Average proportions of statistically significant tests (Type-I error = .05)  

across the 100 mixed data samples. The null hypothesis specified that the mechanism  

underlying a particular pattern of missingness was random. 

 

 

In other works (Hohensinn & Kubinger, 2011; Holman & Glas, 2005; Sijtsma & van der Ark, 2003), a 

unique missing mechanism underlies the entire data sample. This condition might not reflect what happens 

in real situations. 

Among the considered tests, Wilcoxon rank sum test and t-test resulted the best ones for correctly 

identifying MNAR patterns under different conditions of sample size, proportions of MCAR, MAR, and 

MNAR patterns in the data sample, and number of missing responses in the patterns. Both tests are based 

on a measure of the difficulty of the items that were missed and responded by the individual. Even when 

the sample size was not large, rank sum test and t-test allowed the identification of a very large percentage 

of MNAR patterns (more than 90% in the present study), provided that the number of missing responses in 

each pattern was not negligible. These results suggest that rank sum test and t-test can be used to infer if 

the particular pattern of missingness displayed by a respondent has been caused by a random or nonrandom 

mechanism. Such an inference can not be made using traditional methods, such as Huisman’s test (Huis-

man, 1999), which are meant to analyze missingness at the level of the entire data sample. We note in pass-

ing that, whenever it is necessary to obtain an overall judgement about missingness at the sample level, re-

sults of the individual tests can be combined into a unique overall statistic (see, e.g., Fisher, 1932). 
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It is worth noting that, once there is adequate information about item difficulty and propensity to 

be missed (e.g., derived from the analysis of data samples already available), the proposed tests can be used 

to evaluate the pattern of missingness displayed by a new individual respondent without having to collect 

data on an entire sample of respondents. 

A variety of methods for dealing with missing data have been proposed in the literature. These 

range from imputation methods for replacing the missing data with substituted values (Hardouin et al., 

2011; Sijtsma & van der Ark, 2003) to formal models for analyzing incomplete data samples (Anselmi, 

Robusto, Stefanutti, & de Chiusole, 2016; de Chiusole, Stefanutti, Anselmi, & Robusto, 2015; Holman & 

Glas, 2005). The choice of the imputation method or the formal model requires an assumption about the 

mechanism that caused missingness. For instance, two highly recommended imputation methods, multiple 

imputation (Rubin, 1987) and maximum likelihood (Little & Rubin, 1987), assume that the data are MCAR 

or, at least, MAR. Biases might result from an application of these methods to MNAR data (Finch, 2008). 

Similarly, some formal models for the analysis of incomplete data samples assume random missingness. 

Biases in the estimation of person and item parameters might derive from applying these models to MNAR 

data (de Chiusole et al., 2015). If a set of data is available, Wilcoxon rank test and t-test can be used to dis-

tinguish the patterns of missingness that, with some certainty, are caused by a nonrandom mechanism from 

those that are caused by a random mechanism. Then, appropriate analysis methods can be applied to the 

two collections. 
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