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The dyadic proportions test (DPT) is an analytic approach intended for small sample research (e.g., 
clinical and exploratory studies). The procedure involves using proportion tests to compare outcomes 
from dyads (one participant in each condition) associated with the actual experimental assignment with 
outcomes from all possible dyadic assignments. Monte Carlo analyses in Study 1 revealed that sam-
pling distributions generated by DPTs were normally-distributed, as expected with traditional ap-
proaches. In Study 2, data from eight small-sample experiments (n = 8) were analyzed with DPTs and t 
tests. DPTs provided more power and resulted in more significant effects (p < .05) than did t tests. In 
Study 3, data from an intervention study conducted with a small clinical sample (n = 12) were analyzed 
with DPTs and t tests. The experimental effect was significant with the DPT, but not the t test. The 
DPT is an appropriate approach when large samples are not feasible. 
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Over the last several decades, statistical power has become an increasingly large concern for re-

searchers. Technically, power is defined as the probability of correctly rejecting a false null hypothesis (1‒β), 

that is, the probability of avoiding a false negative conclusion (Type II error, β). However, power is influ-

enced by several factors, including the researcher’s tolerance for a false positive result (Type I error, α); the 

magnitude of the effect (e.g., d, r2, etc.); and the sample size used in the statistical test. Since α is dictated 

by convention (p < .05), and since the effect size is a product of the experimental manipulation, the most 

expedient and often used method for maximizing power is to increase sample size. Researchers are typical-

ly expected to conduct power analysis during the design phase to estimate the appropriate sample size, us-

ing estimated effect sizes from prior published research or pilot studies, and to recruit sufficiently large 

samples to avoid Type II error (Cohen, 1977; 1992; Maxwell, 2004).  

There are times, however, when recruiting large samples is not practical, possible, or ethically de-

sirable. Clinical researchers often face a formidable challenge recruiting large samples for intervention 

studies involving low-base rate disorders. For example, recruiting a large sample of individuals diagnosed 
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with Capgras Syndrome (less than 2 in 1,000) or amyotrophic lateral sclerosis (ALS; less than 3.9 in 1,000) 

would be challenging (Mehta et al., 2014; Tamam, Karatas, Zeren, & Ozpoyraz, 2003). Recruitment can 

also be difficult even with more prevalent disorders (e.g., ADHD, learning disabilities, etc.), when the 

study involves smaller subgroups (e.g., individuals with comorbid diagnoses, diverse populations, rural set-

tings, etc.). Large multisite collaborations allow teams of researchers to recruit large clinical samples. 

However, when exploratory studies involve innovative or high-risk methodologies that entail large expend-

itures of time, labor, and financial resources, researchers may be limited to small samples that provide in-

adequate power for traditional statistical approaches. Unfortunately, this has contributed to the file drawer 

problem (Bradley & Gupta, 1997; Rosenthal, 1979). This term refers to the overrepresentation of significant 

results (i.e., p < .05) and the underrepresentation of nonsignificant results (i.e., p ≥ .05). Although researchers 

should strive to recruit sufficiently large samples to meet the power demands of the design, Etz and Arroyo 

(2015) argued that science also would benefit from the development of more powerful statistical approaches 

when large samples are not obtainable. This paper outlines one viable strategy for such situations.  

 

 

THE LOGIC OF TRADITIONAL DATA ANALYSIS 

 

It is helpful to consider the computational logic of traditional analytic approaches in the context of 

a simple experimental between groups design. Participants are randomly assigned to one of two experi-

mental conditions (independent variable), and subsequently measured on some outcome (dependent varia-

ble). Under the null hypothesis, the measures on the dependent variable for the two groups typically are 

expected to be roughly equivalent. When an independent groups t test is used to test the null hypothesis, 

the difference between the two group means are compared with the estimated standard error, which is a 

function of both sample variability (s2
pooled) and sample size (see Equation 1). The resulting t value is used 

to determine whether or not the null hypothesis should be rejected (p < .05).   

 

𝑡 =
𝑀1−𝑀2

√
𝑠2

pooled

𝑁

                                                                      (1) 

 

Ironically, t tests were originally proposed by Gossett (1908 as cited in Lehmann, 1999) as an ap-

proach for working with small samples in agricultural applications. However, t tests often do not provide 

sufficient power to detect the relatively small effects frequently observed in certain areas of educational 

and social science research (De Winter, 2013). This problem then is compounded when researchers are 

limited to small samples.  

 

 

Resampling Approaches 

 

Several resampling strategies have been proposed as a solution for problems associated with small 

sample research. For a more comprehensive review of these, we refer the reader to Hesterberg, Moore, 

Monaghan, Clipson, and Epstein (2005). Fisher’s (1935) permutation test provides one such alternative 

(Good, 2005; LaFleur & Greevy, 2009). Permutation tests, sometimes referred to as randomization tests, 

involve resampling without replacement from the original sample to create a permutation distribution of 

outcomes from all possible experimental assignments (Hesterberg et al. 2005; LaFleur & Greevy, 2009). 
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The outcome from the actual assignment is then compared with this permutation distribution, to determine 

if it is significantly different from what one would expect under the null.  

Many of the assumptions inherent in traditional parametric tests do not apply to permutation tests, 

most notably the assumption regarding the normality of the population (LaFleur & Greevy, 2009). These 

tests also are less biased by outliers than are traditional parametric tests, and they frequently provide more 

statistical power than do other resampling approaches (i.e., bootstrapping; Good, 2005). However, the 

somewhat labor-intensive computations has undoubtedly slowed the widespread use of permutations tests 

by researchers. For example, suppose a researcher conducts a between-groups design with eight partici-

pants randomly assigned to one of two experimental conditions. In this case, 70 unique permutations are 

possible, including the original assignment used by the experimenter (see Equation 2). Additionally, per-

mutation tests frequently provide no more statistical power than do traditional parametric t tests (Berger, 

2000). In the following section, we propose an alternative approach derived from the basic idea of permu-

tation tests that offers increased power with small sample between groups research designs. 

 

number of unique permutations  =
N!

𝑛1!𝑛2!
=

8!

4!4!
= 70                          (2) 

 

 

DYADIC PROPORTIONS TEST 

 

Rather than creating a distribution of permutations associated with all scores being assigned to the 

experimental conditions, our approach involves creating a distribution of outcomes associated with pairs of 

scores, in which each score comes from one of the two experimental conditions. For example, suppose a 

researcher had recruited four participants for a between-groups experiment, with Subjects 1 and 2 random-

ly assigned to the experimental condition and Subjects 3 and 4 randomly assigned to the control condition. 

Table 1 depicts the 12 possible dyads in which each score is paired with each of the other scores (example 

scores in parentheses). Only four pairs (marked with an asterisk) involve dyads associated with the original 

random assignment. The remaining eight dyads involve all other pairings that might have occurred under a 

different random assignment. Next, each dyad is marked as either a success (i.e., subject in experimental 

condition greater than subject in control condition) or nonsuccess (i.e., subject in experimental condition 

not greater than subject in control condition). This allowed us to calculate the proportion of the 12 possible 

dyads that were identified as a success (ptotal). Finally, the proportion of successes among the four dyads 

associated with the original random assignment would be compared with the proportion of successes 

among all 12 possible dyads (pobt). A one-sample proportions (Z) test (see Equation 3) is used to test the 

null hypothesis (i.e., the two proportions are roughly equivalent). We refer to this overall approach as the 

dyadic proportions test (DPT). 

 

𝑧 =  
𝑝obt−𝑝total

𝑠𝑒
                                                            (3) 

𝑠𝑒 =  √𝑝total ∗ (1 − 𝑝total) ∗ (
1

𝑛
)  

 

pobt = proportion of success among dyads associated with original random assignment; 

ptotal = proportion of success among all possible dyadic pairings; 

n = number of dyads associated with original random assignment. 
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TABLE 1 

Scheme for using all possible dyads with one member assigned to experimental condition  

and one member assigned to control condition for pairwise contrasts (N = 4) 

 

 Experimental  Control 

Dyad 1 S1 score (8) 
 

S2 score (5) 

Dyad 2* S1 score (8) 
 

S3 score (4) 

Dyad 3* S1 score (8) 
 

S4 score (3) 

Dyad 4 S2 score (5) 
 

S1 score (8) 

Dyad 5* S2 score (5) 
 

S3 score (4) 

Dyad 6* S2 score (5) 
 

S4 score (3) 

Dyad 7 S3 score (4) 
 

S1 score (8) 

Dyad 8 S3 score (4) 
 

S2 score (5) 

Dyad 9 S3 score (4) 
 

S4 score (3) 

Dyad 10 S4 score (3) 
 

S1 score (8) 

Dyad 11 S4 score (3) 
 

S2 score (5) 

Dyad 12 S4 score (3)  S3 score (4) 

Note. S = subject. Example scores in parentheses. Dyads 

marked with an * involve pairings associated with original ran-
dom assignment (Subjects 1 and 2 in experimental condition 

and Subjects 3 and 4 in control condition). 

 

 

Using the example scores depicted in Table 1, six of the 12 possible dyads (ptotal = .50) resulted in 

successes (experimental score greater than control score). All of the four dyads that resulted from the origi-

nal assignment were successes (pobt = 1.0). When we calculated a one sample proportions test, the differ-

ence between pobt and ptotal was found to be significant (Equation 4). 

 

𝑧 =  
𝑝obt−𝑝total

√𝑝total∗(1−𝑝total)∗(
1

𝑛
)

=
1.0−.50

√.5∗(1−.5)∗(
1

4
)

= 2.00, 𝑝 = .023                  (4) 

 

Our proposed strategy differs from traditional tests on two important points. First, the DPT can be 

viewed as a series of internal replications of the same experiment, using single scores from each condition. 

This contrasts sharply with the traditional approach of relying on a single comparison between the two 

group means, with no regard for the number of times that the research hypothesis correctly predicted out-

comes among individuals assigned to each condition. Second, the dyadic approach is similar to Fisher’s 

permutations test, in that it involves resampling. Consequently, rules regarding independence associated 

with parametric tests (i.e., t tests) do not apply. This again contrasts with traditional t tests that demand that 

each score is used only once.  

 

 

 

THREE SMALL SAMPLE STUDIES COMPARING THE DPT WITH TRADITIONAL T-TESTS 

 

The aim of Study 1 was to use Monte Carlo analyses to compare the distribution of test results 

produced by our DPT approach with the distribution of results produced by traditional independent groups 
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t tests. We anticipated that under the null hypothesis, the two distributions would be roughly equivalent. In 

Study 2, we applied the two approaches to empirical data from eight independent small-sample replications 

(N = 8) of a widely-used memory task. This approach allowed us to compare the effectiveness of the two 

statistical approaches in detecting significant effects (p < .05) with a phenomenon that has been widely-

replicated in larger sample studies. We anticipated that the DPTs would result in greater statistical power 

than would traditional tests. Finally, Study 3 tested the DPT approach in a small-sample clinical applica-

tion. For this, we analyzed data from a small quasiclinical study involving an effect of mindfulness training 

on working memory. Our aim was to determine if the DPT would detect an effect that had been previously 

observed in a larger nonclinical study (Frank, Adams, Leverton, Delmuro, & Collings, 2018). We anticipated 

that the DPT would be more likely to detect a significant effect than would an independent groups t test. 

 

 

STUDY 1: MONTE CARLO STUDY OF EFFECTS ASSOCIATED WITH DYADIC PROPORTIONS 

 

In Study 1, we used a Monte Carlo method to create sampling distributions of effects that would 

be associated with DPTs and traditional t tests. Under probability theory, we would expect both distribu-

tions to be roughly normal. However, it should be noted that this expectation is based on the rule of pro-

portions for one-sample proportions tests and the central limit theorem for traditional t tests, both of which 

impose minimum sample sizes (N = 10 and N = 30, respectively). We purposely violated these sample size 

restrictions, in order to test the utility of the DPT with smaller samples (N = 8). 

 

 

Method 

 

We conducted our Monte Carlo analyses in Microsoft Excel, using 100,000 small samples consist-

ing of eight random numbers. The DPT was used to test the null hypothesis for each sample. For example, 

suppose a sample of eight random numbers was created, with four assigned to the experimental condition 

(56, 38, 79, 75) and four assigned to the control condition (44, 29, 23, 98). A total of 56 dyads, with one 

score assigned to each condition would be possible (see Table 2). Of these, 28 would be considered suc-

cesses (ptotal = .50). Of the 16 dyads created from the original assignment, 11 were successes (pobs = .69). A 

one-sample proportions tests would then be calculated to compare pobs with ptotal (Equation 5). As expected, 

pobs was not significantly different from ptotal when a DPT was conducted.  

 

𝑧 =  
.69−.50

√.50∗(1−.50)∗
1

16

= 1.5, p = .067                                               (5) 

 

For comparison purposes, we also conducted independent groups t tests for each of the 100,000 

samples. This allowed us to create and compare the sampling distributions for both tests (Z and t).   

 

 

Results and Discussion 

 

The distribution of 100,000 Z scores associated with our DPT approach depicted in Figure 1A ap-

peared to be somewhat platykurtic. However, when statistics were calculated for skewness (‒.004) and ex-

cess kurtosis (‒.468), both were within the range of normality. The distribution of test scores associated 
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TABLE 2 

Scores from all possible dyads with one score assigned to each condition in example data 

 

Experimental Control   Experimental Control   Experimental Control   Experimental Control  

44* 29* Success 
 

29* 44* 
  

23 44* 
  

98* 44* Success 

44* 23* Success 
 

29* 29* Success 
 

23 29* 
  

98* 29* Success 

44* 98* 
  

29* 23* 
  

23 98* 
  

98* 23* Success 

44* 56* 
  

29* 98* 
  

23 56* 
  

98* 56* Success 

44* 38* Success 
 

29* 56* 
  

23 38* 
  

98* 38* Success 

44* 79* 
  

29* 38* 
  

23 79* 
  

98* 79* Success 

44* 75*   29* 79*   *23* 75*   98* 75* Success 

56* 44* Success 
 

38* 44* 
  

79* 44* Success 
 

75* 44* Success 

56* 29* Success 
 

38* 29* Success 
 

79* 29* Success 
 

75* 29* Success 

56* 23* Success 
 

38* 23* Success 
 

79* 23* Success 
 

75* 23* Success 

56* 98* 
  

38* 98* 
  

79* 98* 
  

75* 98* 
 

56* 38* Success 
 

38* 56* 
  

79* 56* Success 
 

75* 56* Success 

56* 79* 
  

38* 79* 
  

79* 38* Success 
 

75* 38* Success 

56* 75*   38* 75*   79* 75* Success  75* 79*  

Note. * Corresponds with original assignment: experimental condition (56, 38, 79, 75) and control condition (44, 29, 23, 98). 
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with independent groups t tests with the same 100,000 samples, depicted in Figure 1B, was roughly sym-

metrical, as reflected by the skewness (.081). However, as expected with t distributions for only 6 degrees 

of freedom, the resulting sampling distribution was rather leptokurtic (excess kurtosis = 6.136).  

These findings provide mathematical support for the notion that DPTs come closer to producing a 

normal distribution of test results under the null hypothesis than do traditional t tests when conducted with 

extremely small samples. It is important to note, however, these results may tell us little about empirical 

observations in messy “real world” conditions. In the following section, we compare the two approaches 

using data collected from a series of small-sample experiments. 

 

A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1 

Sampling distributions of effects for 100,000 samples.  

Panel A: Distribution of Z scores associated with one-sample proportions tests (DPT).  

Panel B: Distribution of t scores associated with independent groups t tests. 
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STUDY 2: COMPARISON BETWEEN DPTS AND TRADITIONAL ANALYSES  

WITH DATA FROM EIGHT REPLICATIONS OF A CLASSIC MEMORY EXPERIMENT 

 

In the following study, we analyzed data from eight small-sample replications of Craik and 

Lockart’s levels of processing experimental paradigm (1972), using the DPTs and traditional t tests. We 

selected this experimental task because it is known to produce a reliable, theoretically-sound outcome. In 

this experimental paradigm, participants are shown a list of words and asked to identify either a superficial 

feature of the word (shallow processing) or a more complex semantic quality of the word (deep pro-

cessing). Later, the participants are asked to recall as many of the words as possible. Participants assigned 

to the deep processing condition generally recall more words than do participants in the shallow processing 

condition. However, with extremely small samples (N = 8), traditional t tests are unlikely to provide suffi-

cient power to detect the effect. This allowed us to examine the utility of using DPTs to detect an expected 

effect. We anticipated that the increased power of the DPT approach would result in fewer Type II errors 

than would conventional t tests.  

 

 

Method 

 

Participants 

 

Students enrolled in an introductory honors statistics class served as experimenters, each recruit-

ing small samples (N = 8) of friends, roommates, and in some cases, family members to participate in a 

replication of the aforementioned level of processing experiment. In total, eight samples, each with eight 

participants were recruited to perform independent experiments. This allowed us to compare the results of 

traditional tests and DPTs across several heterogeneous small-sample studies.  

 

 

Procedure and Design 

 

We used a variation of Craik and Lockhart’s experimental paradigm (1972, as cited in Goldstein, 

2004; see Figure 2). Participants were shown a list of eight words, one at a time, with a two-second lag be-

tween words.1 The participants were instructed either to count the vowels (shallow processing condition) or 

to imagine how useful the item would be if stranded on a desert island (deep processing condition) when 

they saw each word. After the presentation of the list, the experimenter asked the participant to count 

backwards from 100 by three’s for 15 seconds. Finally, the participants were instructed to use free-recall to 

write down as many of the words as they could remember, in any order. Each replication experiment repre-

sented a simple between-group design, with deep versus shallow as the two levels of the independent vari-

able. The number of words correctly remembered served as the dependent variable. 

 

 

Results and Discussion 

 

After completing data collection, the experimenter counted and recorded the number of stimuli 

correctly recalled by each participant. This allowed for the calculation of a mean number of correct re-

sponses for the two conditions (shallow and deep processing) for each experimenter’s replication study.  
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FIGURE 2 

Levels of processing experimental paradigm. 

 

 

As illustrated in Figure 3, the mean scores for the deep processing condition appeared to be great-

er than the mean scores from the shallow processing condition in seven of the eight experiments. However, 

when a series of independent groups t tests were conducted, only four significant effects were detected at 

conventional levels (p < .05; see Table 3).  

We then conducted a meta-analysis to test the significance of the effect across all eight experi-

ments, to determine if an effect was present when the sample size was increased through aggregation. To 

accomplish this, we used the method of testing the mean p (see Rosenthal, 1991). The results of this analy-

sis revealed a significant and large effect across the eight experiments, Z = 3.67, p < .001, rmean = .60. This 

finding is in line with both theory and prior research (see Craik & Lockhart, 1972).2 However, these results 

demonstrate that traditional t tests provided insufficient power to detect the effects in half of the small 

sample studies, even when the effect sizes were relatively large.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3 

Mean number of words correctly recalled for each experimental condition in eight experiments.  

* indicates experiment resulted in success, in which mean number correct for deep condition was greater 

than the mean number correct for the shallow condition. Error bars reflect standard error. 
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TABLE 3 

Results from independent groups t tests for each of the eight experiments 

 

  Independent groups t-tests 

  t p reffect 

Experiment 1  1.19 .140 .44 

Experiment 2  3.00 .012* .78 

Experiment 3  2.81 .015* .75 

Experiment 4  4.04 .003* .86 

Experiment 5  2.61 .020* .73 

Experiment 6  0.00 .500 .00 

Experiment 7  1.00 .178 .38 

Experiment 8  1.23 .133 .45 

* p < .05, one-tailed (df = 6). 

 

 

We next conducted DPTs for each of the eight replications. An example of this procedure is illustrated 

in Table 4. Each individual score is paired with the remaining scores, creating a total of 56 unique dyads. The 

16 dyads in which one score from the deep processing condition was paired with one score from the shallow 

processing condition reflect the original random assignment. The remaining 40 dyads reflect all other possible 

dyads that might have occurred with different random assignments. When the score labelled “deep” was greater 

than the score labelled “shallow” the dyad was considered a success, regardless of whether the dyad corre-

sponded with the actual random assignment. In the example depicted in Table 4, the individuals originally as-

signed to the deep processing condition recalled three, four, seven, and eight words respectively, and the partic-

ipants assigned to the shallow processing condition correctly recalled one, two, five, and six words respective-

ly. Consequently, 12 of the 16 dyads associated with the random assignment resulted in “successes” (pobt = 

.75). This contrasts with 28 successes out of the 56 possible dyads (ptotal = .50).  

The final step in our DPT analyses involved conducting one-sample proportion tests to test the dif-

ference between pobt, and ptotal for each of the eight replications. These tests revealed significant effects for 

six of the eight replications (p < .05; see Table 5). One additional replication resulted in a nonsignificant 

trend (p < .10). Because the DPT is a nonparametric test, we wanted to compare the results of our approach to 

three widely used nonparametric tests. The Mann-Whitney U test is a nonparametric equivalent to the inde-

pendent groups t test. When we conducted this test with each of our eight replications, only two were found to 

be statistically significant (see Table 6). When we conducted independent samples Wald-Wolfowitz runs 

tests, and Kolmogorov-Smirnov goodness-of-fit tests with the eight replications, both performed even more 

poorly. Only one replication experiment resulting in significant effects with either approach. 

These findings suggest that DPTs provided substantially more power than did traditional t tests, 

and were likely to have reduced Type II errors resulting from the small sample sizes. The same was true to 

an even greater extent with other nonparametric tests. It should be noted that our demonstration involved 

replications of a simple experimental paradigm with a normative sample, so collecting larger samples 

would not be a problem. In the next section we turn to a situation more typical of clinical studies, in which 

collecting larger samples would not have been feasible.  
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TABLE 4 

All pairwise contrasts for one replication of the levels of processing experiment 

 

Original random assignments S1-4 assigned to shallow condition; S5-8 assigned to deep condition 

Shallow Deep Shallow Deep Shallow Deep Shallow Deep 

S1 (1) S5 (3)* S2 (2) S5 (3)* S3 (5) S5 (3) S4 (6) S5 (3) 

S1 (1) S6 (4)* S2 (2) S6 (4)* S3 (5) S6 (4) S4 (6) S6 (4) 

S1 (1) S7 (7)* S2 (2) S7 (7)* S3 (5) S7 (7)* S4 (6) S7 (7)* 

S1 (1) S8 (8)* S2 (2) S8 (8)* S3 (5) S8 (8)* S4 (6) S8 (8)* 

Other possible random assignments 

Shallow Deep Shallow Deep Shallow Deep Shallow Deep 

S1 (1) S2 (2)* S2 (2) S1 (1) S3 (5) S1 (1) S4 (6) S1 (1) 

S1 (1) S3 (5)* S2 (2) S3 (5)* S3 (5) S2 (2) S4 (6) S2 (2) 

S1 (1) S4 (6)* S2 (2) S4 (6)* S3 (5) S4 (6)* S4 (6) S3 (5) 

S5 (3) S1 (1) S6 (4) S1 (1) S7 (7) S1 (1) S8 (8) S1 (1) 

S5 (3) S2 (2) S6 (4) S2 (2) S7 (7) S2 (2) S8 (8) S2 (2) 

S5 (3) S3 (5)* S6 (4) S3 (5)* S7 (7) S3 (5) S8 (8) S3 (5) 

S5 (3) S4 (6)* S6 (4) S4 (6)* S7 (7) S4 (6) S8 (8) S4 (6) 

S5 (3) S6 (4)* S6 (4) S5 (3) S7 (7) S5 (3) S8 (8) S5 (3) 

S5 (3) S7 (7)* S6 (4) S7 (7)* S7 (7) S6 (4) S8 (8) S6 (4) 

S5 (3) S8 (8)* S6 (4) S8 (8)* S7 (7) S8 (8)* S8 (8) S7 (7) 

Note. S = Subject; # of items recalled in parentheses; * Success (i.e., deep > shallow). 

 

 

 

TABLE 5 

Pairwise contrasts with one sample proportion tests and effect size indicators (reffect)  

for eight replications in Study 2 

 

 Number of successes  z  p  reffect 

Experiment 1 12  2.00  .023*  .45 

Experiment 2 15  3.95  .001*  .70 

Experiment 3 14  3.77  .001*  .69 

Experiment 4 16  4.15  .001*  .72 

Experiment 5 13  3.10  .001*  .61 

Experiment 6 8  .29  .387  .07 

Experiment 7 9  1.39  .082!  .33 

Experiment 8 11  2.09  .018*  .46 

Note. !p < .10. *p < .05. 

 

 
 

  

𝑟𝑒𝑓𝑓𝑒𝑐𝑡  =  √
𝑧2

𝑧2 +  𝑛𝑎𝑐𝑡𝑢𝑎𝑙
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TABLE 6 

Test results (p values) for three widely used nonparametric tests for eight replications in Study 2 

 

 Mann-Whitney U test (p)  Kolmogorov-Smirnov  

goodness-of-fit test (p) 
 Wald-Wolfowitz  

runs test (p) 

Study 2 
     

 
Experiment 1 .343 

 
.699 

 
.371 

 
Experiment 2 .029* 

 
.211 

 
.371 

 
Experiment 3 .057 

 
.211 

 
.371 

 
Experiment 4 .029* 

 
.037* 

 
.029* 

 
Experiment 5 .114 

 
.211 

 
.371 

 
Experiment 6 .999 

 
.999 

 
.883 

 
Experiment 7 .486 

 
.999 

 
.999 

 Experiment 8 .343  .699  .886 

*p < .05. 

 

 

STUDY 3 

 

The following analyses were conducted on data collected from a small sample of college students 

(N = 12). These individuals had participated in a larger between-groups experiment involving the effec-

tiveness of mindfulness training on working memory (Frank et al., 2018). However, because these individ-

uals had met diagnostic criteria for adult attention deficit/hyperactivity disorder (ADHD), their data were 

excluded from the original study. Frank et al. found that among the larger normative sample, a single mind-

fulness training session resulted in a significant increase in response accuracy during a computer-based 

working memory test. In the following section, we report the results of our analyses of the data from the 

small sample of excluded participants. We again compare the results of DPTs and traditional tests. 

 

 

Method 

 

Participants 

 

The participants in the original study had been administered a self-report questionnaire to screen 

for symptoms of ADHD (Current Symptom Scale; CSS, Barkley & Murphy, 1998). In the original sample, 

16 participants had scored above published diagnostic cutoffs for the ADHD-inattentive subscale. All of 

these individuals had participated in the original between-groups experiment (see the Subsection “Proce-

dure”). Six of them had been assigned to the mindfulness condition and 10 had been assigned to the control 

condition. In order to create two groups of equal size (n = 6), we selected six of the control participants, 

based on matching their CSS scores to those of the mindfulness participants (see the Subsection “Instru-

ments”). It should be noted that although the participants’ high scores on the CSS would not be sufficient 

to warrant an actual clinical diagnoses, they do serve the purposes of this demonstration. 
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Instruments 

 

The Current Symptom Scale (CSS; Barkley & Murphy, 1998) is a 4-point Likert-type scale de-

rived from ADHD symptoms from the Diagnostic and Statistical Manual, 4th edition (American Psychiat-

ric Association, 1994). This scale includes nine items related to inattention and nine items related to hyper-

activity or impulsivity, although only the scores on the inattention items were used for the current study. 

Scores above 13.4 are considered to be above the clinical threshold for inattention for young adults (17-29 

years; Barkley & Murphy, 1998). The mean CSS-inattention scores for the two mindfulness and control 

groups were roughly equivalent (Mmindfulness = 21.5, SDmindfulness = 2.3, and Mcontrol = 22.7, SDcontrol = 1.0).  

A computer-based version of Kirchner’s (1958) n-back task was used to assess working memory 

capacity. In this task, a random series of numbers (0-9) appeared one at a time in the center of the screen. 

Participants were instructed to compare each number with the number appearing two spaces prior in the 

sequence. Participants were instructed to press the red key if the two numbers matched, and to press the 

blue key if the number did not match. The percentage of correct responses for when the two numbers 

matched was used as the dependent variable, and as a measure of their working memory capacity. 

 

 

Procedure 

 

Participants first completed the CSS, as part of a battery of other assessments not included in the 

current study. They then participated in one of two training sessions. Participants assigned to the mindful-

ness condition participated in a ten-minute guided mindful breathing exercise. Participants assigned to the 

control condition participated in a 10-minute free-recall exercise in which they were asked reflect on a re-

cent experience in their lives. All other conditions were kept constant across the two conditions (e.g., light-

ing, chair, voice on the instructional tape, etc.). After the training session, participants were administered 

the n-back task. 

 

 

Results and Discussion 

 

As expected, the percentage of matches correctly reported for the participants assigned to the 

mindfulness condition was greater than the percentage of matches correctly reported by the control partici-

pants (see Figure 4). When we conducted an independent groups t test, the effect was not found to be sig-

nificant, despite a large observed effect size, t (10) = 1.64, p = .132, reffect = .46. Similarly, none of the three 

nonparametric tests used in Study 2 (i.e., Mann-Whitney U test, Kolmogorov-Smirnov goodness-of-fit test, 

and Wald-Wolfowitz runs test) resulted in significant effects (all p’s > .05). However, when we conducted 

a DPT, the proportion of successes among the dyads associated with the original assignment (pobs = .64) 

was significantly greater than the proportion of successes among all possible dyads (ptotal = .49), Z = 2.42, p 

= .008, reffect = .37. 

As in Study 2, the DPT provided sufficient power to detect an experimental effect that was missed 

with an independent groups t tests or any of the other three nonparametric tests. It is important to note that 

the divergent results from the two approaches may be the product of either Type I error with the DPTs or a 

Type II error with the traditional t test. We suspect the latter is more likely, given that we essentially repli-

cated an effect found with the original study. The magnitude of the effect size provided further support for 



 

 

6
3

-8
2

  
©

 2
0

1
8
 C

ises 

B
rin

k
h

o
f, M

. W
. G

., P
ro

d
in

g
er, B

., 

&
 S

ab
arieg

o
, C

. 
V

alid
atio

n
 an

d
 eq

u
atin

g
  

o
f M

H
I-5

 v
ersio

n
s 

TPM Vol. 26, No. 2, June 2019 

221-236  

© 2019 Cises 

 

Collings, R. D., Eaton, L. G.,  

Foley, J. T., & Nelson, A. J. 
Using pairwise comparisons to increase power 

234 

the validity of the results from the DPT. We would encourage researchers to include such ancillary infor-

mation in their evaluation of the results from small sample studies, regardless of the statistical tests used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4 

Percentage correct responses when target letter matched numbers two spaces 

prior in the sequence during the n-back task. Error bars reflect standard error. 

 

 

GENERAL DISCUSSION 

 

Our aim was to examine the utility of the DPT approach to analyze data from small sample exper-

iments. The results from our Monte Carlo analyses in Study 1 suggest that the distribution of effects from 

our dyadic comparisons are normally distributed, similar to the distribution of effects produced with tradi-

tional t tests used with larger samples. In Study 2, we found that DPTs were better able to detect significant 

differences between the two experimental conditions than were the traditional t tests, even with as few as 

eight participants. Finally, Study 3 provided an example of how DPTs could be used with small clinical 

samples, again providing more power than traditional analyses.  

Several points should be made about the appropriate application of DPTs. Whenever possible, re-

searchers would be well-advised to recruit sufficiently large samples, based on a priori power analyses. Re-

cruiting larger samples from the general population for a simple memory task used in Study 2 should not 

be an insurmountable obstacle. In that case, traditional analyses (e.g., t tests, chi square, etc.) would be eas-

ier to conduct, less subject to spurious results (i.e., Type I error), and more accessible for most readers. 

DPTs should be reserved for circumstances when recruiting larger samples is not feasible. For example, in 

Study 3, we were able to make use of data that had been excluded from an earlier study. It would not have 

been practical to recruit a larger sample. The dyadic proportions approach allowed us to make use of those 

data, rather than relegating them to the “file drawer.” 

DPTs provide a viable analytic tool for exploratory work. Researchers might use this approach 

with pilot studies and Phase 1 of Clinical Trials. In addition to providing a test of a hypothesized predic-

tion, the results of this might be used for power analyses, for calculating prior probabilities for Bayasian 

analyses, and for subsequent meta-analyses across small samples. We would discourage researchers from 

overly relying on the results of a single study. However, as others have pointed out, replication is an inte-



 

 

6
3

-8
2

  
©

 2
0

1
8
 C

ises 

B
rin

k
h

o
f, M

. W
. G

., P
ro

d
in

g
er, B

., 

&
 S

ab
arieg

o
, C

. 
V

alid
atio

n
 an

d
 eq

u
atin

g
  

o
f M

H
I-5

 v
ersio

n
s 

TPM Vol. 26, No. 2, June 2019 

221-236  

© 2019 Cises 

 

Collings, R. D., Eaton, L. G.,  

Foley, J. T., & Nelson, A. J. 
Using pairwise comparisons to increase power 

235 

gral aspect of all science, regardless of the analytic approach. In keeping with the recommendations of the 

American Psychological Association (APA) taskforce on statistical inference (see Wilkinson, 1999), we 

recommend that researchers report sufficient statistics to allow for meaningful interpretation (i.e., descrip-

tive statistics and effect size indicators). We would also encourage authors to include or make available the 

results from traditional analyses (i.e., t or χ2 tests), even when the DPTs are used for the primary analyses.  

Finally, an important distinction should be made between the DPTs and traditional approaches. 

Traditional parametric tests (such as t tests) examine the likelihood of a result given the sample. DPTs ex-

amine the likelihood of a result given the random assignment. They are not appropriate for nonexperi-

mental approaches (e.g., testing group differences based on diagnoses, age, or gender, or other nonrandom-

ized conditions). Although subsequent applications may be developed for designs involving more than two 

groups or for repeated measures, we currently recommend the use of this procedure only with simple, two-

group designs. 

 

 

CONCLUSION 

 

Although recruiting large samples offer clear advantages in terms of statistical power, this often is 

not feasible. By capitalizing on pairwise comparisons between individual scores in two independent groups 

designs, statistical power can be increased, even with extremely small samples. When used appropriately, 

the DPTs allow researchers to conduct experiments when larger samples are not possible. When this strate-

gy is limited to testing theory-driven hypotheses, and when traditional effect size indicators are included, 

readers have an ability to evaluate the risk of Type I errors. This approach has the potential to add to the 

literature in meaningful ways.  

 

 

NOTES 

 
1. The following two lists of stimuli were used: List 1# chair, mathematics, elephant, lamp, car, elevator, 

thoughtful, and cactus; List 2# umbrella, exercise, forgiveness, rock, hamburger, sunlight, coffee, and bottle. 

Each word was written on a single index card, and shown to the participant for approximately two seconds. 

Our experimenters were trained to use one list for the control condition and the other list with the experimen-

tal condition, and to alternate which lists were used for each condition, to avoid bias. 

2. It should be noted, however, than in actual research the nonsignificant results (p > .05) would typically go 

unpublished (i.e., file draw problem), hence biasing such meta-analyses. 
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