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Researchers who use a multilevel framework often aggregate scores measured at Level 1 in order to 
measure the construct at Level 2. In doing so, they implicitly assume that the construct is measured at 
both the individual and cluster level, that the ontology of the construct is the same at both levels, and that 
reliability is good at both levels. The aim of this paper is to present a seven-step approach that allows one 
to explicitly test those assumptions. Multilevel confirmatory factor analysis, a statistical technique that 
control the nonindependence of data in measurement models testing a factor structure at the within-level 
and between-level simultaneously, provides an analytic framework in which it is possible to test psycho-
metric isomorphism and reliability. Recommendations about what to do when assumptions are verified 
or not are provided in the Section “Discussion.” The Appendix reports Mplus syntaxes necessary to run 
each step of the analysis. 

Keywords: Multilevel confirmatory factor analysis; Psychometric isomorphism; Level-specific reliability; 
Nested data; Measurement assumptions. 
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University of Brescia, Via Trieste 17, 25121 Brescia (BS), Italy. Email: semira.tagliabue@unicatt.it 

In social science research, data are often hierarchically structured (i.e., micro-level units are nested 

with a macro-level). For example, in educational research, pupils are nested within schools; in organizational 

research, employees are nested within companies; in family research, members are nested within families; 

in longitudinal studies, time points measures are nested within subjects; and so on. In recent decades, re-

searchers have become more aware that nested data have to be analyzed taking into consideration the de-

pendencies between observations within groups, in order to avoid biased results (Geiser, 2013). This aware-

ness has increased the utility of multilevel models (Geldhof, Preacher, & Zyphur, 2014).  

Multilevel models are often used in research that aims to test the relationship between variables, 

taking into consideration the different levels which characterize the hierarchical structure. For example, in 

organizational research, an important issue is to analyze predictors of employees’ experience, which could 

be determined by employees’ characteristics (Level 1; for instance, seniority within the company) as well as 

contextual elements of the teams and companies they belong to (higher levels; for instance, company size) 

(Liu, Chen, & Yao, 2011).1 In multilevel models, variance of the dependent variable (employees’ experience 

measured at Level 1) is explained by both predictors at Levels 1 and 2 and cross-level interactions. Regarding 

predictors at Level 2, researchers can choose predictors directly measured at that level (for instance, size of 
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the company) or predictors measured at Level 1 but aggregated at Level 2 in order to measure a cluster’s 

property (for instance average employee’s seniority, a Level 2 predictor).  

Although some literature presents solutions for how to do the aggregation (Dixon & Cunningham, 

2006; Suzuki, Yamamoto, Takao, Kawachi, & Subramanian, 2012), very often, aggregation is simply done 

by averaging the scores of members of each cluster, in order to obtain a cluster level variable. For instance, 

just as a few recent examples, Alm, Låftman, Sandahl, and Modin (2019) measured school leadership, school 

ethos, and teacher cooperation and consensus by averaging the corresponding scores provided by teachers 

within each school; Thomas et al. (2017) measured collective identity motives averaging, within each sport 

team, athletes’ score on the Social Identity Motives Scale. When researchers average scores at Level 1 in 

order to create a variable at Level 2, or cluster level, they implicitly assume some measurement properties of 

the instrument. Those implicit assumptions are: 1) it is possible to measure the construct at both the individual 

(or lower) and cluster level; 2) the construct at the cluster level has the same dimensions as the construct at 

the individual (or lower) level; 3) the construct at the cluster level has the same meaning as the construct at 

the individual (or lower) level; 4) the reliability is the same at the cluster and individual (or lower) levels. 

Those assumptions are implicit because, as said, in many papers very little reasoning is provided about the 

psychometric characteristics of instruments used in multilevel models. The present paper aims to stimulate 

researchers’ awareness about those implicit assumptions, and to show how to explicitly test them in order to 

improve understanding of constructs and their interpretation of multilevel regression models.  

Nonindependent data produce a multilevel or nested structure that also needs to be taken into ac-

count in the psychometric analysis of the data. Currently, techniques and statistical software are available to 

analyze multilevel data, but these techniques have been mostly used to analyze relationships between con-

structs at different levels of analysis rather than the psychometric properties of measurement models (Dedrick 

& Greenbaum, 2011).  

 

 

FIRST IMPLICIT ASSUMPTION: IT IS POSSIBLE TO MEASURE THE CONSTRUCT AT BOTH THE INDIVIDUAL AND 

CLUSTER LEVELS 

 

The first assumption is based on the fact that, because there is a nested structure of data (e.g., em-

ployees within companies), a specific construct can be different both within clusters and between them. So, 

for instance, employees within the same company are different in their evaluation of their experience (within 

variance), and companies are different in how much, on average, their employees are experts (between var-

iance). However, the implicit assumption should be tested before using variables at both levels. Indeed, there 

is a need to verify whether the between variance is present, that is, whether individual ratings are affected by 

the fact that they belong to different companies. If not, it makes no sense to aggregate the scores at the 

company level because companies are not different. Usually, to test that assumption, the intraclass correlation 

coefficient (ICC) is computed. The ICC measures the proportion of variance in the variable that is explained 

by the grouping structure of the hierarchical model. It is important to specify that, when the construct of 

interest (e.g., experience) is measured with an instrument composed of a certain number of items, there is a 

need to test that assumption for each item; indeed, we want to be sure that belonging to a specific cluster 

partially explains how each employee evaluates each item. Each item’s ICC represents the ratio between how 

much the intercepts (means) of the item varies between groups and the total variation (sum of the intercepts’ 

variation between groups and the variation within groups). When groups’ intercepts differ but within any 

group there is no variation, ICC will equal 1; on the contrary, when groups’ intercepts are all the same and 



 

 

6
3

-8
2

  
©

 2
0

1
8
 C

ises 

B
rin

k
h

o
f, M

. W
. G

., P
ro

d
in

g
er, B

., 

&
 S

ab
arieg

o
, C

. 
V

alid
atio

n
 an

d
 eq

u
atin

g
  

o
f M

H
I-5

 v
ersio

n
s 

TPM Vol. 27, No. 3, September 2020 

383-406 ‒ Special Issue     

© 2020 Cises 

 

Tagliabue, S., Sorgente, A.,  

& Lanz, M. 
Measurement within multilevel framework 

385 

there is within-group variation, ICC approaches 0 and hierarchical modeling is not appropriate (Garson, 

2013). An ICC equal or higher than .05 indicates the need to consider the nonindependence of data (Dyer, 

Hanges, & Hall, 2005). Some authors (e.g., Peugh, 2010) also suggest to accompany the ICC with the esti-

mation of the design effect (DE), as it corrects the ICC estimation for the sample design and cluster size (e.g., 

how many members there are, on average, in each company included in data collection). In particular, DE = 

1 + ICC (c-1), where c is the average group size. Design effect’s values higher than 2 are usually obtained 

when the nonindependence of data cannot be ignored (Satorra & Muthen, 1995). 

 

 

SECOND IMPLICIT ASSUMPTION: THE CONSTRUCT AT THE CLUSTER LEVEL HAS THE SAME DIMENSIONS OF 

THE CONSTRUCT AT THE INDIVIDUAL LEVEL (CONFIGURAL ISOMORPHISM) 

 

After having verified the first assumption, the researcher could think, implicitly, that the structure 

of the construct (number of factors, items measuring each factor) is the same at the individual (i.e., employ-

ees) and cluster (i.e., companies) levels. However, it is possible that is not the case. For instance, Margola, 

Fenaroli, Sorgente, Lanz, and Costa (2019) showed that the Family Relationships Index (FRI) — an instru-

ment measuring the quality of family relationships — can have three dimensions at the individual level (con-

flict, cohesion, communication) and just one dimension at the family level (relationship quality). So, before 

adopting the implicit assumption that the within and the between level construct have the same structure, 

researchers should test this assumption. 

Testing this assumption means testing a measurement model adopting a multilevel framework, mul-

tilevel confirmatory factor analysis (MCFA), in order to simultaneously test a factor structure at the within-

level (e.g., experience score related to the single employee) and at the between-level (e.g., average employees 

experience score related to the specific company), identifying individual-level and group-level (or cluster-

level) latent factor(s) that explain the variance of items’ scores measured at individual-level. MCFA allows 

taking into account the presence of two or more levels in relation to the covariance matrix and the factorial 

structure (Dedrick & Greenbaum, 2011). With regard to the covariance matrix, MCFA decomposes the total 

sample covariance matrix (ST) into the sample pooled within-group covariance matrix (SPW) and the sample 

between-group covariance matrix (SB). The ST is an estimator of the total population matrix, ∑T — with ∑T 

= ∑W + ∑B, where ∑W and ∑B represent respectively the within- and between-group population matrices. 

While in classic CFA, analyses are performed on the whole sample covariance matrix ST, in the multilevel 

framework, interest focuses primarily on the two decomposed sample matrices: SPW and SB, where the analysis 

of SPW, which is a consistent and unbiased estimator of ∑W, is a within matrix representing within-level 

variation, and SB, which is a consistent and unbiased estimator of ∑W + c∑B (where c represents the 

group/class size), is a between matrix reflecting across-group variation (Li, Duncan, Harmer, Acock, & 

Stoolmiller, 1998). In other words, using these two matrices, it is possible to separately model the covariance 

among items that is due to individuals and the one that is due to groups. 

With regard to the factor structure, MCFA allows for testing the structure of an instrument sepa-

rately at the two levels. Specifically, the two within- and between-level matrices are separately and simulta-

neously used to analyze the factor structure at each level. So, not only does MCFA analyze the covariances 

of the two matrices separately, but it also allows for different structures at each level. This is a relevant issue, 

as some constructs may have different factor structure at different levels (lack of configural isomorphism). 

When the factorial structure is the same at the two levels, configural isomorphism is found. Indeed, configural 
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isomorphism means that the factor structures of lower- and higher-level constructs are equivalent. Specifi-

cally, the same number of factors and the pattern of zero and nonzero factor loadings are expected to hold 

across levels. The lack of configural isomorphism indicates that the cluster-level construct is different (has a 

different structure and is measuring a different concept) than the individual-level construct. This shows that 

the structure of inter-group variability is fundamentally different from that of inter-individual variability.  

 

 

THIRD IMPLICIT ASSUMPTION: THE CONSTRUCT AT THE CLUSTER LEVEL HAS THE SAME MEANING AS THE 

CONSTRUCT AT THE INDIVIDUAL LEVEL (PSYCHOMETRIC ISOMORPHISM) 

 

Having a good fit when the same factorial model (e.g., three factors) is required at both levels is not 

sufficient to affirm that the meaning of the construct is the same across levels. Thus, the researcher should 

be aware of this third possible implicit assumption. It is possible to affirm that the meaning of latent con-

structs is the same only when items’ factor loadings are also equivalent across levels. Tay, Woo, and Vermunt 

(2014) proposed the expression “psychometric isomorphism”2 to indicate the condition in which both the 

factorial structure (configural isomorphism) and the factor loadings (metric isomorphism) are the same across 

levels. Metric isomorphism exists if factor loadings are equivalent across levels. The presence of both con-

figural and metric isomorphism would suggest that the interpretation of the common factors is similar across 

levels. If, instead, a lack of metric isomorphism is found when configural isomorphism is present, it means 

that there are differences in the defining characteristics of constructs between levels. Specifically, the content 

of an item is more representative (i.e., higher factor loading) of the meaning of the construct at one level than 

at the other level. Only if researchers find both configural and metric isomorphism can conclude that they 

are measuring the same construct at the two levels.  

The concept of “psychometric isomorphism” has to be differentiated from the concept of “measure-

ment invariance.” In particular, measurement invariance refers to the comparison across different measure-

ment models at the same level; the focus is on the comparison of the measurement models between different 

groups (e.g., male and female as in Elosua & Hermosilla, 2013), different time points (e.g., Time 1 and Time 

2 as in Sorgente, Tagliabue, & Lanz, 2019), different relationship types (e.g., same perceiver’s relationships 

with father, with mother, and with romantic partner; Tagliabue & Lanz, 2014), or different members of the 

same groups (e.g., Partner 1 and Partner 2 as in Claxton, DeLuca, & VanDulmen, 2015). The general idea is 

that the different measurement models belong to the same levels (e.g., individual-level for the first, third, and 

fourth example, time-level for the second example). Instead, when researchers test psychometric isomor-

phism, the compared measurement models belong to different levels, allowing one to distinguish constructs 

at the within and between levels (e.g., the employee and the company level).  

 

 

FOURTH IMPLICIT ASSUMPTION: RELIABILITY IS THE SAME AT THE CLUSTER AND INDIVIDUAL LEVELS 

(LEVEL-SPECIFIC RELIABILITY) 

 

Even if researchers are aware of the three previous assumptions, and they test them before aggre-

gating, they could implicitly assume that, having the same meaning at both levels, the reliability is good at 

both levels. Researchers using nonindependent data should consider that the reliability of a score (i.e., ratio 

of true score variance over total variance at that level; Jak & Jorgensen, 2017) depends not only on the factor 

loadings of the items but also on their residual variance. Consequently, the presence of psychometric iso-

morphism is not a sufficient condition to expect that the scale is equally reliable at both levels. Reliability 
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needs to be measured separately for each level (Geldhof et al., 2014). This is a relevant issue considering 

that multilevel constructs, that is phenomena that are potentially meaningful both at the level of individuals 

and at one or more levels of aggregation (Forer & Zumbo, 2011), as well as instruments adopted to measure 

them, can work differently at different levels of analysis (Dedrick & Greenbaum, 2011).  

According to Geldhof and colleagues (2014), accounting for multilevel variability has been firmly 

established for hypothesis testing but has been largely ignored in the context of estimating a scale’s reliabil-

ity. Reliability estimation is usually computed at the single level even with nested data, ignoring the option 

of accounting for multilevel variability. Ignoring hierarchical data structures can bias reliability estimation 

for a desired level of analysis. Single-level reliability estimates therefore do not necessarily reflect true scale 

reliability at any single level of analysis. 

Geldhof and colleagues (2014) provide formulas to estimate reliability separately for the within- 

and between-level factors. Specifically, they provided syntaxes for the three more commonly utilized relia-

bility estimates: alpha (α), omega or composite reliability (ω), and maximal reliability (H). In the current 

paper, we present and utilize only ω. We decided not to present alpha because it is a consistent estimate of 

reliability only when all items load on a single underlying construct and when all items represent that con-

struct equally well (i.e., essential τ-equivalence), a condition that is rarely assumable. Furthermore, we de-

cided not to present H because, after performing simulation studies, Geldhof and colleagues (2014) stated 

that “given the propensity for H to overestimate its population value at the between level, we cannot recom-

mend its use in empirical multilevel research” (p. 89). 

Omega (ω) has been discussed by several authors (e.g., Bentler, 2009; Raykov, 1997). It is a SEM-

based reliability index, conceptually similar to alpha. Zinbarg, Revelle, Yovel, and Li (2005) reported that, 

even when the assumptions of the essentially τ-equivalent model are met, omega performs at least as well as 

alpha. However, under violations of τ-equivalence, omega outperforms alpha and is clearly the preferred 

choice. The formula to compute omega (Geldhof et al., 2014) is the following: 

 

 
 

where λi represents the factor loading of item i on a single common factor and θii represents the 

unique variance of item i. This formula has to be performed twice, one for each level. Between-level relia-

bility will be based on factor loadings and residual variances of the between-level factor solution, while the 

within-level reliability will be based on factor loadings and residual variances of the within-level solution. If 

metric isomorphism holds, the factor loadings will be the same across levels and only the residual variances 

will differ between the two equations. 

 

 

AIM 

 

As should be clear, when those four assumptions remain implicit, researchers interpret their multilevel 

regression models’ findings as measuring the same meaning and the same reliable construct(s) at the within and 

between levels. But, that may not be true, and only explicitly testing each assumption would verify it.  

The current paper aims to illustrate how to test the four assumptions in order to increase researchers’ 

awareness related to measurement of psychometric properties. In particular, a multistep procedure that allows 

testing the measurement model of the construct at both the within and between levels is introduced to the 
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reader. Specifically, when researchers assume that their constructs have the same meaning at both within and 

between levels (i.e., this is true any time they aggregate individual score to obtain group-level score), they 

should test this assumption by running an isomorphic MCFA model. This consists of performing MCFA, 

psychometric isomorphism, and level-specific reliability analyses. This practice has been systematized into 

a multistep procedure composed of seven steps, which integrate the procedure proposed by Dyer et al. (2005) 

with the suggestions proposed by Tay and colleagues (2014) and Geldhof and colleagues (2014). Steps 1 and 

2 allow researchers to test the first assumption (it is possible to measure the construct at both individual and 

cluster level); Steps 3, 4, and 5 are necessary to perform MCFA and to test the second assumption (configural 

isomorphism), while the Steps 6 and 7 are necessary to test, respectively, the third and fourth assumptions, 

that is, testing for psychometric isomorphism (as suggested by Tay et al., 2014) and level-specific reliability 

(as suggested by Geldhof et al., 2014).  

The presentation of these seven steps was realized through an illustrative application regarding the 

multilevel measurement model of the Social Identity Motives Scale of Thomas et al. (2017). That scale has 

been proposed as a unidimensional scale measuring the social motivations that predispose people toward a 

specific social identification (Vignoles & Manzi, 2014). The development of that scale has been based on 

the motivated identity construction theory (MICT; Vignoles, 2011). According to MICT, people are moti-

vated to identify themselves with group (e.g., with the company where they work) in order to positively feel 

about themselves (self-esteem motive); to feel distinguished from others (distinctiveness motive); to feel 

included and accepted (belonging motive); to feel that their lives are meaningful (meaning motive); to feel 

that their past, present, and future are connected (continuity motive); and to feel competent and capable of 

influencing their environments (efficacy motive). According to MICT (Vignoles, 2011), those six identity 

motives (self-esteem, distinctiveness, belonging, meaning, continuity, and efficacy) hold to both personal 

and social level. For example, a self-esteem motive at personal level could be “Being a member of this team 

makes me see myself positively” (i.e., my identification with the company is motivated by the positive es-

teem I have for myself thanks to my belonging), while a self-esteem motive at social level could be “I see 

this team positively” (i.e., my identification with the company is motivated by the positive esteem I have for 

the company). The Social Identity Motives Scale of Thomas et al. (2017) measures the social motives that 

motivates people to identify themselves with the group.  

Assuming a multiple informant approach (i.e., more informants evaluating the same entity; Lanz, 

Sorgente, & Tagliabue, 2018), the instrument has here been adapted to measure how employees perceive their 

company, with the idea that, if employees see their company in a positive way, they have a social motive to 

develop an identification with the company. As stated by Thomas et al. (2017), it is important to analyze this 

construct within a multilevel framework because in the responses that each individual gives to the items there 

is both an individual component (i.e., how the single individual perceive the group) and a collective component 

(i.e., how “group members collectively perceive the group,” Thomas et al., 2017, p. 10). Thomas et al. (2017) 

adopted this scale to study social identification in sport teams (i.e., athletes nested with teams), while we used 

it to investigate the social identity motives of Italian employees in different companies. Consequently, we ex-

pect that the construct at the individual level is a measure of “how the single employee perceives the company” 

(a score that allows for comparison of social motives across individuals), while at the group level it is a measure 

of “how each company is perceived by its members” (a score that allows comparison across companies).  
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METHOD  

 

Participants 

 

Participants in the present study were drawn from Talenti senza età: donne e uomini over50 e il 

lavoro [Ageless talents: Over 50 women and men and their job], a study launched in 2017 by Valore D and 

Università Cattolica del Sacro Cuore to examine which challenges, expectations, obstacles, and opportunities 

characterize employees of Italian companies who are over age 50 (https://valored.it/ricerche/talenti-senza-

eta-2019/). The sample here adopted consists of 9,575 employees (64.4% male) aged between 50 and 69 (M 

= 55.33; SD = 3.31). These employees belonged to 31 different companies. These companies had different 

sizes (from 13 to 73,727 employees), belonged to different business sectors (mainly chemical/pharmaceuti-

cal, food and beverage, energy/extractive industry, and media/entertainment) and were located in different 

Italian regions. On average, 309 employees filled in the questionnaire at each company (Min = 4; Max = 

4815; SD = 860.51). 

 

 

Measures 

 

Social identity motives were measured using the scale proposed by Thomas et al. (2017). The scale 

is composed by six items because each item measures one of the six identity motives (self-esteem, distinc-

tiveness, belonging, meaning, continuity and efficacy) that, according to the MICT (Vignoles, 2011), affect 

the identification with a group. Each item was evaluated on a 5-point scale (1 = strongly disagree; 5 = 

strongly agree). Sample items are: “I see [company name] as having a distinctive identity different from 

other companies” (distinctiveness motive); “I see [company name] having an identity that persists over time 

— from past to present to future” (continuity motive).  

 

 

Data Strategy 

 

MCFA, psychometric isomorphism, and level-specific reliability were analyzed using a 7-step pro-

cedure. More details can be found in Section “Results.” 

Analyses were performed in Mplus 7.1 using the maximum likelihood estimation method. As miss-

ing data for each item of the scale ranged from 0.4% to 1.1% and they were completely at random — Little’s 

MCAR Test: χ2(111) = 111.80; p = .461 — the full information maximum likelihood was adopted as a strategy 

to manage the missing data. Mplus syntax for each step of the analysis can be found in Appendix.  

Model fit was evaluated based on the following absolute fit indices that, according to Bonito and 

Keyton (2019), are the most recommended for MCFA: Chi-square test (χ2), standardized root mean square 

residual (SRMR), root mean square error of approximation (RMSEA), and the comparative fit index (CFI).  

Alternative models have to be compared (e.g., isomorphism testing) based on their absolute and 

relative fit indices (Bonito & Keyton, 2019). Specifically, in some studies (e.g., Tay et al., 2014), authors 

compared configural isomorphism model and metric isomorphism model using relative indices such as the 

Akaike information criterion (AIC), the Bayesian information criterion (BIC), and sample size adjusted BIC 

(ssBIC). Models with the lowest information criteria, which indicate model parsimony, should be preferred. 

In other studies (e.g., Margola et al., 2019), authors compared configural and metric models using absolute 

indices. Specifically, a delta score (Δ) was calculated by subtracting CFI index of the metric model from CFI 
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index of the configural model. When ΔCFI is smaller than or equal to ‒0.01, the two compared models can 

be considered equal, and the most parsimonious should be preferred (Cheung & Rensvold, 2002). 

 

 

RESULTS  

 

Testing the First Implicit Assumption: It is Possible to Measure the Construct at Both the Individual and 

Cluster Level 

 

Step 1: Perform a Conventional Confirmatory Factor Analysis on the Sample Total Covariance Matrix 

 

The first step consists of running a classic CFA, that is an analysis that ignores the nonindependence 

of data. In other words, in this step, participants are treated as independent individuals, not considering that 

they work for different companies. As stated by Dyer et al. (2005), results and fit indices of this model may 

be biased when there is appreciable nonindependence, especially when group sizes are large or when the 

factor structure at the within-group level of analysis is different from the factor structure at the between-

group level (lack of isomorphism).  

Expecting a unidimensional structure for the Social Identity Motives Scale (Thomas et al., 2017), 

we ran a CFA requiring that the six items loaded on the same latent factor. The obtained model had a partially 

satisfactory fit (see Table 1), with CFI and SRMR indicating perfect fit and RMSEA indicating lack of fit. 

This disagreement between indices may also depend on RMSEA, being the main index to be affected by the 

presence of too few items in the model (Chavez, Rodriguez, Vue, & Cabrera, 2019). Furthermore, Step 1 

model had strong (from .771. to .892) and significant (p < .001) standardized factor loadings.  

 

TABLE 1 

Fit indices of measurement models 

 

Model χ2 df p 
RMSEA  

[90% CI] 
p CFI SRMR AIC BIC ssBIC 

Step 1  999.550 9 < .001 
.107  

[.102, .113] 
< .001 .977 .018 122566.20 122695.20 122638.00 

Step 3  880.977 9 < .001 
.102  

[.096, .108] 
< .001 .977 .022 117734.42 117820.13 117781.99 

Step 4a  197.152 9 < .001 
.821  

[.724, .923] 
< .001 .697 .018 ‒274.760 ‒257.552 ‒294.938 

Step 4b 197.298 10 < .001 
.777  

[.685, .874] 
< .001 .698 .017 ‒276.614 ‒260.840 ‒295.111 

Step 5  918.964 18 < .001 .072 - .977 
.022 (W) 

‒.015 (B) 
120142.245 120357.253 120261.92 

Step 6  933.069 23 < .001 .064 - .976 
.022 (W) 

‒.015 (B) 
120146.351 120325.523 120246.08 

Note. χ2 = Chi-square; df = degree of freedom; RMSEA= root mean square error of approximation; CI = confidence interval; CFI =  

comparative fit index; SRMR = standardized root mean square residual; W = SRMR for the within-level; B = SRMR for the between-level; 
AIC = Akaike information criterion; BIC = Bayesian information criterion; ssBIC = sample-size adjusted BIC. 
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Step 2: Estimate Between-Group Level Variation 

 

In this step, the proportion of systematic between-group variation for each observed variable in the 

model has to be calculated. In other words, there is the need to estimate how big the portion of the average 

participant’s response that depends on his/her belonging to a specific company is. This estimation has to be 

done separately for each item of the scale.  

Among the different analytic approaches useful to calculate this proportion of systematic between-

group variation, intraclass correlation coefficient (ICC) is the most used (Lanz et al., 2018), but also design 

effect (DE) could be used to correct estimation for the average cluster size. Mplus automatically calculates 

ICC for each variable when the “type = twolevel basic” syntax is included in the “analysis” command, while 

DE should be calculated manually using the formula already presented in the present paper, that corrects ICC 

for c (average group size), which in our study is equal to 308.87. The cut-off for these two indices is respec-

tively 0.05 and 2. As in our case (see Table 2), ICCs are higher than .09 and DEs are higher than 30, the need 

to perform a MCFA is evident.  

 

TABLE 2 

Indices of between-group variation for the six items of the Social Identity Motives Scale 

 

Item ICC Design effect 

1 0.120 37.945 

2 0.128 40.407 

3 0.127 40.100 

4 0.096 30.556 

5 0.136 42.870 

6 0.129 40.715 

Note. ICC = intraclass correlation coefficient. 

 

 

Testing the Second Implicit Assumption: The Construct at the Cluster Level has the Same Dimensions as 

the Construct at the Individual Level (Configural Isomorphism) 

 

Step 3: Perform a Factor Analysis on the Sample Pooled-Within Covariance Matrix 

 

If in the second step participants’ responses depended on both the participants themselves (within-

level) and the group to which they belong (between-level), researchers have to analyze the factorial model 

separately for within-level (Step 3) and between-level (Step 4) covariance matrices.  

Even if Steps 1, 3, and 4 could seem similar as they test the same factorial model on just one level, 

an important difference encompasses these three steps and it consists of the covariance matrix they use to 

estimate the model. As stated before, when a classic CFA model is run (like Step 1) the total sample covari-

ance matrix (ST) is used and, consequently, the within- and between-level variances are not distinguished. 

The ST can be decomposed in two other matrices: SPW and SB, containing respectively the within-level vari-

ation and the across-group variation. In Step 3 the same factorial structure tested in Step 1 is estimated based 

on the SPW, that is accounting only for the within-level variation. Vice versa, in Step 4, the same factorial 

structure is estimated based on the SB, that is accounting only for the between-group variation. Step 3 and 
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Step 4 are essential as they give information that are level-specific and are precursors of Step 5 where both 

levels are tested separately but simultaneously. 

Thus, to perform Steps 3 and 4, researchers have to extract within- and between-level covariance 

matrices from the sample total covariance matrix (see syntax in Appendix). Using the within-level covariance 

matrix, researchers perform the factor analysis on the sample pooled-within covariance matrix (Step 3) and 

compare it with the factor analysis obtained in the first step. The model estimated using the within-level 

covariance matrix may show a worse fit if the predominance of the construct-relevant variance is at the 

between-group level. On the other hand, the model estimated using within-level covariance may show an 

improved fit if the construct relevant variance is primarily at the within-group level, or the factor structures 

differ substantially at the two levels.  

In our case (see Table 1), the Step 3 model is only slightly improved with respect to the Step 1 

model. Standardized factor loadings of this factor model were all strong (from .743. to .875) and significant 

(p < .001). 

 

 

Step 4: Perform a Factor Analysis on the Sample Between-Group Covariance Matrix 

 

The Step 3 analysis has to be repeated but using the between-group covariance matrix (Step 4). This 

model had very low fit indices (see Table 1, Step 4a) as well as an estimation problem: the residual variance 

of Item 5 was negative (0 for the unstandardized solution and ‒.001 for the standardized solution). As sug-

gested by Dyer et al. (2005), we fixed Item 5 error variance to zero in order to avoid a negative variance 

estimate. The new model (see Table 1, Step 4b) had no estimation problems, but its fit indices remained 

substantially poorer than the Step 3 model (the decreased fit is considered almost usual; Dyer et al., 2005). 

The Chi-square improved due to the substantially smaller sample size used in Step 4 (i.e., the num-

ber of companies vs. the number of employees). Standardized factor loadings of this factor model were all 

very strong (from .940. to 1.00) and significant (p < .001).  

 

 

Step 5: Perform Multilevel Confirmatory Factor Analysis (Configural Isomorphism) 

 

In Step 5, researchers have to perform the MCFA considering both the within- and the between-

level variation of the responses. In other words, in this step the expected factorial structure is simultaneously 

tested at both within- and between-level, basing the estimation respectively on within- and between-level 

variation. If researcher assumes that the construct at the cluster level has the same dimensions as the construct 

at the individual level, the same number of factors (one factor in our example) and the same equivalence in 

the zero-and-nonzero loading patterns will be required at both levels. If fit indices of this model are good, 

researchers can conclude that there is configural invariance across the two levels, that is, the construct has 

the same dimensions at both individual and cluster level. 

As shown in Table 1, the Step 5 model is the one that fits our data best. At both levels, all factor 

loadings were significant at p < .001 and were strong at both the within (standardized factor loadings ranging 

from .743 to .875) and between (standardized factor loadings ranging from .937 to .998) levels. Note that in 

this model Item 5’s residual variance was not fixed to 0 and all the standardized factor loadings were freely 

estimated.  



 

 

6
3

-8
2

  
©

 2
0

1
8
 C

ises 

B
rin

k
h

o
f, M

. W
. G

., P
ro

d
in

g
er, B

., 

&
 S

ab
arieg

o
, C

. 
V

alid
atio

n
 an

d
 eq

u
atin

g
  

o
f M

H
I-5

 v
ersio

n
s 

TPM Vol. 27, No. 3, September 2020 

383-406 ‒ Special Issue     

© 2020 Cises 

 

Tagliabue, S., Sorgente, A.,  

& Lanz, M. 
Measurement within multilevel framework 

393 

Good fit indices of this model support the configural isomorphism of the Social Identity Motives 

Scale. In other words, the social identity construct has the same factorial structure (unidimensional structure) 

at both the individual and company levels, as hypothesized by Thomas et al. (2017). 

 

 

Testing the Third Implicit Assumption: The Construct at the Cluster Level has the Same Meaning of the 

Construct at the Individual Level (Metric Isomorphism) 

 

Step 6: Metric Isomorphism  

 

In the sixth step, metric isomorphism was tested to verify if the higher-level construct has a similar 

meaning as its lower-level counterpart (Tay et al., 2014). If Step 5 verifies that the number of dimensions is 

invariant across levels, Step 6 verifies that the association between each item and each dimension (i.e., factor 

loading) is invariant across level. If item-dimension association is the same, it means that the content of each 

items describes the dimension equally well on the two levels and that, consequently, the dimension has the 

same meaning on the two levels.  

To test that assumption, it is necessary to set factor loadings the same across levels (Figure 1) and 

compare the fit indices of this constrained model (Step 6) with the unconstrained configural model (Step 5). 

Specifically, when comparing relative fit indices (AIC, BIC, and adjBIC), two indices out of three suggested 

that the constrained model (Step 6) is better than the unconstrained one (Step 5). The same conclusion is 

achieved comparing the models through absolute fit indices. Specifically, the ΔCFI, being equal to ‒.001 

(obtained subtracting .976 to .977), is below the ‒.01 cut-off suggested by Cheung and Rensvold (2002).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1 

Metric isomorphism model of the Social Identity Motives Scale.  
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Testing the Fourth Implicit Assumption: Reliability is the Same at the Cluster and Individual Levels  

(Level-Specific Reliability) 

 

Step 7: Level-Specific Reliability  

 

Once the most plausible factorial structure is identified, the internal consistency of the factor(s) at 

each level has to be tested in order to estimate the instrument’s reliability. It is important to test reliability 

after testing metric isomorphism so that researchers can include constraints put in the factorial structure found 

in the previous step. In our case, we tested within- and between-level reliability keeping the factor loadings’ 

constraints across levels. Specifically, we tested omega (ω; Geldhof et al., 2014). Results suggest that the Social 

Identity Motives Scale is strongly reliable at both within (ω = .919) and between (ω = .998) levels. 

 

 

DISCUSSION 

 

This paper’s aim was to illustrate a seven-step approach useful for explicitly testing four implicit 

assumptions that researchers often make when they aggregate Level 1 scores (e.g., employees’ scores) into 

a Level 2 score (e.g., company’s score). Specifically, this paper presents a procedure for performing MCFA 

in order to explicitly assume that there is variance explained by the cluster level, configural, and psychomet-

ric isomorphism, and acceptable reliability at both cluster and individual levels.  

That multistep procedure was applied to test the measurement model of the Social Identity Motives 

Scale that measures an individual level (i.e., perception that individuals have of the group they belong) and 

a group level construct (i.e., average perception of group members). In the original paper, Thomas et al. 

(2017) implicitly assumed that the scale was isomorphic across levels, as they operationalized higher-level 

construct using an aggregated of individual-level scores within groups. However, that aggregation is based 

on an implicit assumption: within- and between-level constructs have the same ontology (Jak & Jorgensen, 

2017). Many researchers have that implicit belief, but they are not aware that the cross-level ontology of 

multilevel construct is not something obvious, but needs to be proved.  

In the present paper, we adapted the scale to the organizational context, measuring employees’ so-

cial identity motives at the individual and cluster levels, and testing the four implicit assumptions through 

the seven-step procedure. Steps 1 and 2 allowed for testing that the Social Identity Motives Scale items’ 

variances are explained by both between and within levels. Steps 3, 4, and 5 allowed testing configural iso-

morphism. The sixth step allowed us to prove that the meaning of the construct was the same at within and 

between levels (psychometric isomorphism testing); the seventh step (level-specific reliability) showed that 

the latent factor scores are highly reliable both at the within and between levels. In order to go into the 

meaning of those findings, we now discuss what to do when implicit assumptions are verified, and when 

they are not.  

 

 

When Implicit Assumptions are Verified 

 

When the first assumption (“It is possible to measure the construct at both the individual and cluster 

level”) is verified (ICC higher than .05 and DE higher than 2), researchers need to go on and test for psychometric 

isomorphism and level-specific reliabilities. Indeed, they are aware that individual scores are influenced by their 

belonging to different clusters (i.e., companies), so that between factor(s) in the MCFA have to be considered.   
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When the second (“The construct at the cluster level has the same dimensions as the construct at the 

individual level”) and third (“The construct at the cluster level has the same meaning as the construct at the 

individual level”) assumptions are verified, psychometric isomorphism (i.e., both configural and metric iso-

morphism) is found. Jak and Jorgensen (2017) stated that psychometric isomorphism is a prerequisite to 

operationalizing higher-level constructs as aggregation of individual-level scores within groups. For exam-

ple, if we measure experience across different employees belonging to different companies, we can opera-

tionalize the construct “experience” at the company level by aggregating the scores of the members who 

belong to the same company only if psychometric isomorphism has been found. 

Moreover, psychometric isomorphism is also a prerequisite for testing score or nomological simi-

larity (Tay et al., 2014). Score similarity consists of verifying how similar scores belonging to the same 

cluster are (e.g., how similar scores of employees belonging to the same company are), and assumes psycho-

metric isomorphism across levels. Nomological similarity across-level (or homology) verifies to what extent 

the relations across different constructs are equivalent across levels (Chen, Bliese, & Mathieu, 2005).  How-

ever, homology can be established only if psychometric isomorphism has been demonstrated. For example, 

researchers can compare the relationship between performance and social identity motives at the within-level 

with the same relationship at the between-level only if the two constructs have showed psychometric iso-

morphism (i.e., if the two constructs have the same meaning/nature at both levels). A lack of psychometric 

isomorphism leads to invalid tests of homology. In other words, in order to compare the relationship that two 

variables have at the between-level with the same relationship at the within-level, researchers need to verify 

that the two variables have the same meaning across levels (psychometric isomorphism). Indeed, from a con-

struct validation standpoint, it is well-known that measurement equivalence needs to be established before pre-

dictive equivalence (Vandenberg & Lance, 2000). In sum, finding both configural and metric isomorphism 

allows researchers to aggregate individual-level scores measured within groups into a between-level score, cal-

culate reliability at both the within and between levels, and test homology across levels.  

Finally, when the fourth assumption (“The reliability is the same at the cluster and individual lev-

els”) is also verified, researchers can affirm that residual variances are not determining a lower reliability 

related to the between- or within-level score. In this way, the aggregate variable can be considered as reliable 

as the within-level variable. 

 

 

When Implicit Assumptions are not Verified 

 

On the other hands, it is important considering what researchers can do when they do not confirm 

the four assumptions. If items’ between variance (first assumption) is not verified (i.e., ICCs values lower 

than 0.05), the nested structure of the data is not affecting the individual responses. For example, we esti-

mated ICC for the items of Flourishing Scale (Diener et al., 2010), an instrument that assesses the individual 

psychological well-being and that was administered to the employees of our research project. ICCs values 

for the eight items of the scale ranged from 0.01 to 0.02. As those values were lower than the cut-off, we can 

conclude that the individual psychological well-being employees reported was not affected by the company 

they belonged. In this case, classical CFA is allowed and no estimation bias due to the nested design will be 

present. Moreover, it also means that clusters (i.e., companies) are not different in the average perception of 

their members (i.e., employees), so between-level variables should not be computed. 

If between-level variance is verified, but not configural isomorphism, researchers should test at least 

a weak configural isomorphism (Tay et al, 2014). Weak configural isomorphism consists of having the same 
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number of factors across levels without equivalence in the zero-and-nonzero loading patterns. If weak con-

figural isomorphism is found, researchers should question the similarity of the latent factors’ definition. 

However, it is difficult to obtain weak configural isomorphism because, in most of the cases in which strong 

configural isomorphism is not found, the between-level shows a lower number of latent factors than the 

within-level (e.g., Margola et al., 2019). It seems that in those kinds of models, item variance at the between 

level can be explained by fewer latent factors than the within-level variance. Researchers should reflect on 

the implication that the absence of configural isomorphism has for the theoretical model of the investigated 

construct. For instance, Margola and colleagues (2019) showed that the Family Relationships Index (FRI) 

— an instrument measuring the quality of family relationships — has three dimensions at the individual level 

(conflict, cohesion, communication) and just one dimension at the family level (relationship quality). Theo-

retically speaking, we could speculate that at family level the quality of relationships is conceptualized more 

as a homogeneous construct, resulting in one dimension, whereas, at the individual level, family members 

differentiate among different facets of that quality. 

In other cases, configural isomorphism is verified, but not the equivalence of factor loadings across 

levels (lack of metric isomorphism; Tay et al., 2014). In those cases, researchers should first try to test a 

partial metric isomorphism model. This means progressively releasing factor loadings’ constraints in order 

to determine which parameters did not meet isomorphism across levels. For instance, Ruelens, Meuleman, 

and Nicaise (2018) found that two of five indicators (Trust in National Parliament, Politicians, Political Par-

ties, Legal System and Police) measuring political trust were not equal across levels. In particular, findings 

showed that political trust was conceptualized more as based on trust in legal system and police at country 

level than at the individual level. When the partial metric isomorphism model is not significantly different 

from the configural isomorphism model, researchers should interpret the latent factor differently across lev-

els. Even if the latent factor is measured using the same items, the absolute weight that some items have in 

defining the construct changes across levels. Researchers should consider items that are weighted more (i.e., 

have higher factor loadings) as closer to the real meaning of the measured construct at that level. 

If partial metric isomorphism is not found, researchers should verify if they can find at least a weak 

form of metric isomorphism (Tay et al., 2014). Weak metric isomorphism is found when the relative ordering 

of loadings (not their absolute values) is equivalent between levels. In this case, the meaning of the construct 

remains similar across levels (items that carry more weight in defining the construct are the same), but the 

item’s residual variance is different across levels. This means that the level that has the smaller factor load-

ings in absolute value terms is the one that measure the construct with higher measurement error.  

Finally, if all the three previous assumptions are found, but reliability is not good at the between-

level, researcher should consider aggregating individual-level scores excluding the residual error, which 

means saving a factor score at the between-level. Indeed, reliability is computed by considering residual 

errors at both within and between levels, and thus low reliability when metric isomorphism is found is prob-

ably due to issues regarding residual errors (Geldhof et al., 2014).  

 

 

A Last Implicit Assumption About the Content of the Construct at the Cluster Level 

 

Recent literature underlines a last implicit assumption about the conceptual interpretation of cluster-

level constructs. According to Stapleton and Johnson (2019), the between-level factor isomorphic to the 

within-level factor should be interpreted as the average score of the construct reported by members belonging 

to the same group, as we suggested in the present paper. In that case, the construct is a property of the cluster’s 
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members, not a property of the cluster. Thus, for example, if the construct is the employee’s experience 

within a specific company, the between-level factor will be the experience of the “average employee” of that 

company. We can use the same reasoning when the construct is referred to as a property of the cluster, such 

as a property of the company. Thus, for example, employees are asked to evaluate the performance or the 

climate of their company. The implicit assumption is that the between-level construct is measuring a property 

of the company, such as the company’s performance. However, we should test that implicit assumption. 

Indeed, it could also be that we are only measuring the “average employee” ’s perception of the company’s 

performance. Thus, it is not sufficient to conduct isomorphic MCFA as we did in the present paper, but it is 

important to test a specific model, called the shared/isomorphic MCFA model (Bonito & Keyton, 2019; 

Stapleton & Johnson, 2019). If the aim is to test the company’s performance or climate, researchers need to 

explicitly assume that, at the between-level, two different constructs are measured: the average of the em-

ployees’ perception of the company’s climate or performance (configural factor) and the shared factor that 

is the variance not explained by the average perception and is interpreted as the company’s climate or per-

formance. The shared factor has to be added to the between-level in addition to the latent factor isomorphic 

to the within-level latent factor. Note that the shared factor should be always hypothesized when fit indices 

of the isomorphic MCFA are not good (Stapleton & Johnson, 2019).3  

 

 

Limitations 

 

The current paper has been proposed as a tutorial for researchers aiming to test measurement models 

of nested data in order to verify their implicit measurement assumptions. In order to facilitate the compre-

hension of the proposed seven steps, we used a simple illustration based on a brief and unidimensional scale. 

In research practice, researchers may have to use longer scales where items are organized across different 

factors. This could create some difficulties in finding configural and metric isomorphism. Furthermore, our 

data were nested at one level (company), while other researchers may have data nested across more levels (e.g., 

employees nested both in teams and companies; Liu et al., 2011). This requires testing psychometric isomor-

phism across more than two levels. Finally, we presented how to test the measurement model of a scale adopting 

classic test theory as a psychometric framework, but other researchers could adopt item response theory, requir-

ing differences in the approach testing for configural and metric isomorphism (Tay et al., 2014). 

Even if our paper has those limitations, it has the advantage of working well as introduction to topics 

such as MCFA and isomorphism that many authors are not familiar with. All the disciplines testing multilevel 

models using aggregate scores (Alm et al., 2019) could benefit from the steps we proposed here (e.g., Sta-

pleton and Johnson, 2019 proposed solutions for the educational literature).  

In sum, our suggestion is that researchers collecting nested data should always consider testing the 

measurement model of their construct using a isomorphic MCFA. Furthermore, researchers should verify the 

assumptions regarding measurement and meaning of the construct and, according to the results obtained on 

psychometric isomorphism, they may reach different conclusions that have different practical implications; 

the same is true regarding aggregation. 

 

 

NOTES 

 

1. For the sake of simplicity, from here on we speak about multilevel structure based on two levels (e.g., 

employee and company), but multilevel analysis can be also applied to nested structure composed by 

more than two levels (e.g., employees, teams, companies; see e.g., Liu, Chen, & Yao, 2011). 
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2. Tay et al. (2014) used the expression cross-level isomorphism to indicate the condition in which “higher-

level constructs have similar meanings and properties as their lower-level counterparts” (p. 78). Accord-

ing to Tay et al., isomorphism in multilevel constructs, in its ideal form, involves three aspects: (1) psy-

chometric isomorphism across levels; (2) nomological similarity across levels; and (3) score similarity 

within collective units. In the current paper we are going to present only psychometric isomorphism, 

being that our focus is on the measurement model of multilevel constructs. 

3. For further details, see Stapleton and Johnson (2019)’s paper that also offer Mplus syntax to run this 

shared/isomorphic MCFA model. 
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APPENDIX 
 

Syntaxes to Run Each Step 

 

Step 1: Perform a Conventional Confirmatory Factor Analysis on the Sample Total Covariance Matrix 

 

DATA: 

 

FILE IS identity.dat; 

 

VARIABLE: 

 

NAMES ARE 

ID 

company 

item1 

item2 

item3 

item4 

item5 

item6; 

 

USEVARIABLES ARE 

item1 

item2 

item3 

item4 

item5 

item6; 

 

MISSING ARE all (999); 

 

MODEL: 

 

SIM BY  

item1 

item2 

item3 

item4 

item5 

item6; 

 

OUTPUT: 

 

STAND SAMP MOD; 
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Step 2: Estimate Between-Group Level Variation 

 

DATA: 

 

FILE IS identity.dat; 

 

VARIABLE: 

 

NAMES ARE 

ID 

company 

item1 

item2 

item3 

item4 

item5 

item6; 

 

USEVARIABLES ARE 

item1 

item2 

item3 

item4 

item5 

item6; 

 

MISSING ARE all (999); 

 

CLUSTER IS company; 

 

ANALYSIS: 

 

TYPE= TWOLEVEL BASIC; 

 

OUTPUT: 

 

SAMP; 

 

SAVEDATA: 

 

SIGBETWEEN IS BetCov.dat; 

SAMPLE IS WinCov.dat; 

 

 

Step 3: Perform a Factor Analysis on the Sample Pooled-Within Covariance Matrix 

 

DATA: 

 

FILE IS WinCov.dat; 

FORMAT IS free; 

TYPE IS COVA; 

NOBSERVATION IS 9344;  !report here number of participants (9575) less number of groups (31) 

 

VARIABLE: 
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NAMES ARE  !include here only variables that were listed in Step 2 "USEVARIABLES ARE"  

item1 

item2 

item3 

item4 

item5 

item6; 

 

MODEL: 

 

SIM BY 

item1 

item2 

item3 

item4 

item5 

item6; 

 

OUTPUT: 

 

STAND SAMP MOD; 

 

 

Step 4: Perform a Factor Analysis on the Sample Between-Group Covariance Matrix 

 

DATA: 

 

FILE IS BetCov.dat; 

FORMAT IS free; 

TYPE IS COVA; 

NOBSERVATION IS 31;  !report here the number of groups (31 companies) 

 

VARIABLE: 

 

NAMES ARE  !include here only variables that were listed in Step 2 "USEVARIABLES ARE"  

item1 

item2 

item3 

item4 

item5 

item6; 

 

MODEL: 

 

SIM BY 

item1 

item2 

item3 

item4 

item5 

item6; 

 

item5@0;  !this line was added in step 4b 
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OUTPUT: 

 

STAND SAMP MOD; 

 

 

Step 5: Perform Multilevel Confirmatory Factor Analysis (Configural Isomorphism) 

 

DATA: 

 

FILE IS identity.dat; 

 

VARIABLE: 

 

NAMES ARE 

ID 

company 

item1 

item2 

item3 

item4 

item5 

item6; 

 

USEVARIABLES ARE 

item1 

item2 

item3 

item4 

item5 

item6; 

 

MISSING IS ALL (999); 

 

CLUSTER IS company; 

 

ANALYSIS: 

TYPE IS TWOLEVEL;  

ITERATIONS IS 5000; 

ESTIMATOR IS ML; 

 

MODEL: 

 

%BETWEEN% 

B_SIM BY  

item1 

item2 

item3 

item4 

item5 

item6; 

 

%WITHIN% 

W_SIM BY  

item1 

item2 
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item3 

item4 

item5 

item6; 

 

OUTPUT: STAND SAMP MOD; 

 

 

Step 6: Metric Isomorphism 

 

DATA: 

 

FILE IS identity.dat; 

 

VARIABLE: 

 

NAMES ARE 

ID 

company 

item1 

item2 

item3 

item4 

item5 

item6; 

 

USEVARIABLES ARE 

item1 

item2 

item3 

item4 

item5 

item6; 

 

MISSING IS ALL (999); 

 

CLUSTER IS company; 

 

ANALYSIS: 

TYPE IS TWOLEVEL;  

ITERATIONS IS 5000; 

ESTIMATOR IS ML; 

 

MODEL: 

 

%BETWEEN% 

B_SIM BY  

item1 (a) 

item2 (b) 

item3 (c) 

item4 (d) 

item5 (e) 

item6 (f); 

 

%WITHIN% 
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W_SIM BY  

item1 (a) 

item2 (b) 

item3 (c) 

item4 (d) 

item5 (e) 

item6 (f); 

 

OUTPUT:  STAND SAMP MOD; 

 

 

Step 7: Level-Specific Reliability 

 

DATA: 

 

FILE IS identity.dat; 

 

VARIABLE: 

  

NAMES ARE 

ID 

company 

item1 

item2 

item3 

item4 

item5 

item6; 

 

USEVARIABLES ARE 

item1 

item2 

item3 

item4 

item5 

item6; 

 

MISSING IS ALL (999); 

 

CLUSTER IS company; 

 

ANALYSIS: 

TYPE IS TWOLEVEL;  

ITERATIONS IS 5000; 

ESTIMATOR IS ML; 

 

MODEL: 

 

%BETWEEN% 

B_SIM BY  

item1* (a) 

item2 (b) 

item3 (c) 

item4 (d) 

item5 (e) 
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item6 (f); 

 

B_SIM@1; 

 

item1 (g); 

item2 (h); 

item3 (i); 

item4 (l); 

item5 (m); 

item6 (n); 

 

%WITHIN% 

W_SIM BY  

item1* (a) 

item2 (b) 

item3 (c) 

item4 (d) 

item5 (e) 

item6 (f); 

 

W_SIM@1; 

 

item1 (o); 

item2 (p); 

item3 (q); 

item4 (r); 

item5 (s); 

item6 (t);  

 

 

OUTPUT: SAMP; 

 

MODEL CONSTRAINT:  

 

NEW(NUM DEN_B OMEGA_B DEN_W OMEGA_W); 

 

NUM = (a+b+c+d+e+f)**2;  !numerator  . It is the same for the between level and the within  

                                               ! level only if the metric invariance is present 

 

DEN_B = ((a+b+c+d+e+f)**2)+(g+h+i+l+m+n);  !denominator   – between level 

OMEGA_B = NUM/DEN_B; 

 

DEN_W = ((a+b+c+d+e+f)**2)+(o+p+q+r+s+t);  !denominator   – within level 

OMEGA_W = NUM/DEN_W; 
 


