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Over the past decade, the generalizability of randomized experiments, defined as the level of con-
sistency between an estimated treatment effect in a nonrandom sample and the true treatment effect in a 
target population, has received increasing attention from the research community. Existing methods fo-
cus on either: (a) prospectively preventing or (b) retrospectively adjusting away, the bias caused by the 
nonrandom selection of institutions, such as schools, into a study sample. Existing methods overlook 
the multilevel nature of the selection process that occurs when institutions volunteer for a research 
study. This study explores methods to adjust away bias caused by this multilevel selection process. A 
simulation study evaluates the bias reducing properties of different methods for estimating and utilizing 
inverse probability of participation (IPP) weights to reduce bias. Methods that incorporate both student 
and school IPP weights reduce more bias than methods that only incorporate the school IPP weights. 

Keywords: Generalizability; Multilevel; Randomized trials; Inverse probability weighting; Nonrandom 
sample. 
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Generalization of results from an experiment performed on a nonrandom sample to a population of 

interest is an important issue for researchers. Policy makers rarely care only about the effect of an interven-

tion on the study sample. Rather, they often reference the average treatment effects estimated by studies to 

make decisions about the initiation, continuation, or termination of social programs and policies for larger 

or different populations. Thus, external validity, inference about the extent to which a causal relationship 

holds over variations in persons, settings, treatments, and outcomes (Shadish, Cook, & Campell, 2002), 

warrants attention from researchers. In the past, discussions regarding external validity in published ran-

domized experiments were often informal or absent (Blom-Hoffman et al., 2009; Caldwell, Hamilton, Tan, 

& Craig, 2010; Fernandez-Hermida, Calafat, Becoña, Tsertsvadze, & Foxcroft, 2012). Consequently, it has 

historically been difficult to gauge the applicability of treatment effects estimated by a randomized experi-

ment to other populations. 

Much of the work on generalization of experiments has occurred in the educational research 

community. In the past decade, this community devoted increasing attention to developing methods for 

improving the generalizability of randomized controlled trials (RCTs; Hedges, 2013; Olsen, Orr, Bell, & 

Stuart, 2013). Existing work has focused on the ways in which institutions, for example, schools, that vol-

unteer for experiments differ from those that do not. An implicit assumption is that treatment effects vary 

only as a function of observable characteristics of schools (school-level moderators). However, for almost 

all educational RCTs, the study sample is collected in two stages — schools are recruited first, and then 
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students and/or teachers volunteer for the study. The importance of accounting for nonrandom within 

school selection processes is evidenced by variations in participation rates across institutions and is an al-

most inevitable consequence of the need for consent before running research studies. 

Bloom-Hoffman et al. (2009) conducted a review of nearly 500 studies of school-based interven-

tions and prevention programs, and found that only 11.5% reported consent procedures and student partici-

pation rates. The review does not contain information about school or teacher level participation rates. Of 

the studies that reported active consent procedures (i.e., required parents to sign consent forms) there was 

an average student participation rate of 65.5%, with the student participation rate ranging from 11-100% 

across the studies reviewed. The results of this study bring up two important points for those interested in 

generalizing RCT results. First, the vast majority of studies did not report participation rates, which makes 

it difficult to gauge how representative the population studied was of the overall population of eligible stu-

dents. Second, the wide variation in participation rates suggests that self-selection in to the sample, and 

therefore, the generalizability of the results, varied considerably across these school-based interventions, 

and possibly across sites within each intervention.  

Additionally, evidence from large scale international assessments shows that student-level non-

response is related to student characteristics, and in general, less capable students are more likely to be ab-

sent from assessments (Rust, 2013). It is plausible, if not likely, that such differential participation related 

to student characteristics also occurs in RCTs. 

There is also reason to believe that teachers who volunteer for research studies are not representa-

tive of teachers overall. Kelcey and Phelps (2013) calculated multilevel design parameters of teacher 

knowledge (e.g., ICC, 𝑅w
2 , 𝑅b

2) using data from several large-scale professional development programs. 

Despite large sample sizes of these programs, the authors suggested that teacher volunteers in their samples 

were probably not representative of all teachers nationwide in the United States. 

At the moment, the implications for generalization of differential consent rates across different 

levels of the educational hierarchy is unknown. Interaction effects may be important. For instance, if 

schools from less privileged districts tend to volunteer for research studies, but more privileged students 

within those schools volunteer, what does this mean for the generalizability of results? If less experienced 

teachers from certain districts are more likely to volunteer for research studies, but more experienced 

teachers from other districts are more likely to volunteer, how will this impact the generalization of the re-

sults of RCTs of professional development interventions? 

We hope that future empirical research will provide answers to these important questions. The 

present study considers a multilevel propensity score-based approach to improving generalization from 

studies with a multilevel selection process. While self-selection into study samples is often a multilevel pro-

cess with more than two levels (e.g., schools volunteer, teachers within schools consent/volunteer, and par-

ents/students within classrooms consent/volunteer) the current paper only considers two levels of self-

selection. This study will extend the existing research on generalization by exploring ways to construct re-

weighted estimates of treatment effects when there is a two-level selection process. The study proposes to im-

prove the existing inverse probability of participation (IPP) weighting method by adding an additional level of 

weighting at the within-school level, and then evaluates the proposed method through a simulation study. 

 

 

EXISTING WORK 

 

Existing work on improving the generalizability of RCTs has suggested two distinct approaches. 

The first approach is prospective and focuses on coming up with a recruitment plan that will optimize the 
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generalizability of the estimated sample average treatment effect (SATE) to a population average treatment 

effect (PATE) of interest (e.g., Tipton, 2013a, 2013b, 2014, Tipton et al., 2014). The second approach is 

retrospective and focuses on statistical adjustment to understand better how RCT results might apply to dif-

ferent inferential populations of interest (e.g., Chan, 2017, 2018; Cole & Stuart, 2010; Kern, Stuart, Hill, & 

Green, 2016; O’Muircheartaigh & Hedges, 2014; Stuart, Cole, Bradshaw, & Leaf, 2011). Both approaches 

assume that treatment effects vary as a function of observable variables that characterize institutions (e.g., 

school-level moderators). Prospective approaches aim to recruit samples that mirror the population of in-

terest as closely as possible with respect to moderators by minimizing a multivariate distance measure. Ret-

rospective approaches use statistical adjustment to account for the biasing effects of moderating variables 

in order to obtain an unbiased (or nearly unbiased) estimate of the average treatment effect in an external 

population. The current paper focuses on retrospective techniques. 

 

 

Inverse Probability of Participation (IPP) Weighting 

 

IPP weighting is a retrospective adjustment approach which uses estimated participation probabili-

ties to create a synthetic “population” that mimics the target population (Cole & Stuart, 2010; Stuart, Brad-

shaw, & Leaf, 2015). The first step of the method is to define a target population for which inference will 

be made. For example, the Cognitively Guided Instruction study (Schoen, Lavenia, & Tazaz, 2017) was an 

RCT conducted with volunteer teachers at 23 participating elementary schools in the state of Florida in the 

United States. One plausible target population would be all public elementary school math teachers in Florida.   

The second step is to collect data on institutions in the study sample and in the target population. 

Examples of possible variables in the educational context include: school size, number of full-time teach-

ers, percentage of students that qualify for free/reduced priced lunch, and percentage of minority students. 

Researchers can take advantage of publicly available sources such as the Common Core of Data (CCD), 

the Stanford Education Data Archive (SEDA), and state-specific data sources (Tipton & Olsen, 2018). 

These variables must include all covariates that both predict selection into the RCT sample and moderate 

treatment effects (Tipton, 2013a; Stuart et al., 2011).  

The third step is to estimate the selection probability 𝑝h, the probability of selecting institution h 

from a population into a study sample, for each institution in the sample and in the population. 

𝑝h = 𝑃(𝑆h = 1|𝑽𝐡)   (1.1) 

ℎ = 1, 2, 3, . . . , 𝐻 is the index of institutions. 

𝑆h = 1 if institution h is in the study sample.  

𝑆h = 0 if institution h is in the target population but not in the sample. 

𝑽𝐡 is a vector of school-level variables which contains all variables that explain the selection of 

institution h into the study sample and the variability of treatment effect in the population. 

Typically, 𝑝h can be estimated via logistic regression, as in Equation 1.2. Researchers have also 

applied generalized boosted regression and random forest methods to estimate the probability of participa-

tion (Kern et al., 2016). These methods have the advantage of being less sensitive to functional form as-

sumptions compared to logistic regression (Cole & Stuart, 2010; Stuart et al., 2011; Stuart et al., 2015).  

ln[
𝑝h

1−𝑝h
]  =  α0 + α1𝑉1h + α2𝑉2h + ⋯ + αm𝑉mh   (1.2) 

After obtaining the predicted probabilities of participation for each institution, sample observa-

tions are weighted by the inverse of their participation probabilities. When the selected study sample is a 

subset of the target population, the weight for institution h is 𝑤h =
1

𝑝ĥ
. The researcher should check that the 



 

 

1
-3

9
 

©
 2

0
1
7
 C

ises 

TPM Vol. 27, No. 3, September 2020 

453-476 ‒ Special Issue    

© 2020 Cises 

 

Li, E. Y., & Rhoads, C. 
Methods for handling multilevel selection 

456 

weighted sample is similar to the target population with regard to observed covariates by computing bal-

ance statistics. If covariate balance between the sample and the population is not sufficient, the researcher 

should try other model specification to estimate 𝑤h.  

The last step after checking covariate balance is to estimate the population average treatment ef-

fect (PATE). Assuming multiple individuals per institution a researcher can fit a weighted multilevel re-

gression model adding IPP weights to the second level (Stuart et al., 2015). A weighted multilevel regres-

sion model has the capacity to incorporate unequal selection probabilities for units at each level of sample 

selection (Pfeffermann, Skinner, Holmes, Goldstein, & Rasbash, 1998). The estimated coefficient for the 

treatment assignment indicator is the estimated PATE. This estimator is similar to the Hortitz-Thompson 

(HT) estimator from the survey sampling literature, which is sometimes used to adjust for nonresponse in 

surveys (Lohr, 2009).  

The unconfounded sample selection assumption is the cornerstone of both the prospective and ret-

rospective methods — all covariates that both predict selection into the RCT sample and moderate treat-

ment effects must be included in the construction of distance measures or post-hoc adjustment models 

(Tipton, 2013a; Stuart et al., 2011). Additionally, assumptions that are required for causal inference in 

more general settings, that is, the stable unit treatment value assumption (SUTVA) and strongly ignorable 

treatment assignment in the focal study, must also be satisfied.  

The SUTVA idea requires some additional discussion in the context of the current paper. We ex-

plore re-weighting methods assuming randomization at the school level. As argued in Rubin, Stuart, and 

Zanutto (2004) and Hill (2013), when schools are randomized it is not so important that the SUTVA as-

sumption hold within schools in order to produce coherent, internally valid, estimates of treatment effects. 

However, when attempting to generalize from an experiment on self-selected students to a within-school 

population of students, we must assume that the potential outcomes of all students in the school do not de-

pend on which students elect to participate in the study. Similarly, when generalizing to a population of 

schools we must assume that the school average potential outcomes do not depend on which schools elect 

to participate in the study. These new types of SUTVA assumptions have not previously been discussed in 

the literature, but are necessary in order to ensure that average treatment effects are well-defined for the 

entire population of interest. As such, the rest of our paper makes these assumptions.  

 

 

CURRENT STUDY 

 

The existing IPP weighting method assumes that covariate information that can be used to im-

prove generalizability is only available at a single level of a population that potentially has a multilevel 

structure. In educational applications to date, only school-level covariate information has been utilized. 

However, studies should leverage information about nonparticipating individuals within participating insti-

tutions, as well as information about nonparticipating institutions, when such information is available. To 

extend the existing IPP weighting method, a natural choice is to estimate and utilize the individual IPP 

weights in addition to the institution level IPP weights, which takes into account both within-institution and 

between-institution selection processes. To fix ideas, the rest of the paper will assume an educational con-

text and use “students” instead of “individuals” and “schools” instead of institutions, however, the conclu-

sions are equally applicable to other multilevel settings. 

We define student IPP weight 𝑤ℎ𝑘  as the inverse of the probability that student k in participating 

school h will participate. Similar to the steps of estimating the school IPP weight, the first step for estimat-
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ing a student IPP weight is to define a within school target population. For example, the student sample of 

the Cognitively Guided Instruction study (Schoen et al., 2017) consisted of volunteer Grades 1 and 2 stu-

dents in 23 elementary schools. For this study, plausible within school target populations are all Grade 1 

and 2 students in each school. The next step is to collect information on students in the study sample and 

the target within school population. Examples of such information includes demographic variables, pre-

intervention achievement measures, and pre-intervention noncognitive measures. For students in the study 

sample, data are usually collected as a part of the study. For students who are in the participating schools 

but not in the consenting study sample, their information must be obtained from a different source, for in-

stance, an administrative database maintained by a state department of education.  

The third step is to estimate the student sampling propensity score, 𝑝hk, defined as the probability 

of student k within school h would participate in the study, provided that school h participates in the RCT 

𝑝hk =  𝑃(𝑆hk = 1|𝑿hk, 𝑽h, 𝑆h = 1)   (1.3) 

ℎ = 1, 2, 3, . . . , 𝐻 is the index of schools. 

𝑘 = 1, 2, 3, . . . , 𝑛h is the index of students in school h.  

𝑆hk = 1 if the student k is in the study sample of school h.  

𝑆hk = 0 if the student k is in the target population within school h but not in the sample. 

𝑿hk, 𝑽h contain all variables that explain the selection student k into the study sample in school h 

and the variability of treatment effect in the within school population.  

To estimate 𝑝hk, researcher should use a method that takes into consideration the nested structure 

of students within schools and variation in the selection process across schools. Past research has suggested 

that participation rates differ across schools (Bloom-Hoffman et al., 2009) and selection of students into 

studies is related to student and school characteristics (Rust, 2013). In addition, the relationship between 

student characteristics and selection may vary across schools (Kim & Seltzer, 2007). This study considers 

two options for estimating 𝑝hk, both of which might be termed multilevel propensity scores (Kim & Selt-

zer, 2007; Li, Zaslavsky & Landrum, 2013; Rosenbaum, 1986). The multilevel propensity score is an ex-

tension of the standard propensity score (Rosenbaum & Rubin, 1983; Stuart, 2010) to settings where indi-

viduals are clustered in higher level units and selection occurs at the individual level. The multilevel pro-

pensity score is defined as the probability of selection given individual and cluster characteristics. Similar-

ly, the student sampling propensity score that we seek to estimate in our study is the probability of partici-

pating in the within-school study sample given student and school characteristics.  

The first estimation option is to run separate models, such as Equation 1.4, for each participating 

school h. Running one model per school allows for differential within-school selection because each school 

has its own slope and intercept. The slopes indicate the relationships between student characteristics and 

selection probability. This approach is only feasible when the within-school sample and population sizes 

are large enough and when there is sufficient overlap in the distribution of the covariates in the study and 

population distributions.  

ln (
𝑝hk

1−𝑝hk
|𝑆h = 1) = η0h + η1h𝑋1,hk + η2h𝑋2,hk + η3h𝑋3,hk + ⋯  (1.4) 

When the above conditions are not met researchers will find it useful to borrow strength from oth-

er clusters by using a multilevel random effects model that pools student-level information from all partici-

pating schools, such as in Equation 1.5. This model accounts for the variability in the slopes relating stu-

dent-level covariates to the selection probability across institutions by using school-specific random slopes. 

The advantage of the random effects model is its robustness in the presence of small schools, because the 

empirical Bayes estimator in the random effects model allows small clusters to “borrow strength” from 

large clusters. On the other hand, it has a shortcoming of not guaranteeing balance of the study sample and 
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target population within each cluster, because the empirical Bayes estimator shrinks the random Level-1 

coefficient toward the grand mean (Li et al., 2013, Raudenbush & Bryk, 2002). The study samples within 

participating schools will be balanced with the target within school populations in participating schools as a 

whole, but balance is not guaranteed within any school in particular. 

ln (
𝑝hk

1−𝑝hk
|𝑆h = 1) = η0h + η1h𝑋hk  (1.5) 

η0h = τ00 + τ01𝑉h 

η1h = τ10 + τ11𝑉h 

After student IPP weights have been estimated, they should be applied to observations in the sam-

ple. Researcher should check that the weighted student samples are similar to the within school target pop-

ulations with respect to observed covariates. Next, student and school IPP weights should be applied to 

Level 1 and Level 2 of a weighted multilevel regression model, respectively, to obtain an estimate for 

PATE.   

The current study compares the existing IPP weighting method that address school-level selection 

only with new methods that address both within and between school selection process through a simulation 

study. The research questions that this study investigates are: (1a) under what conditions do methods of ac-

counting for the within school selection process in educational studies reduce bias in estimates of the 

PATE, compared to only considering the between school selection process, and (1b) how much is bias re-

duced under different simulation scenarios? (2) How do different methods for estimating IPP weights per-

form under different simulation scenarios?  

 

 

SIMULATION DESIGN 

 

Data Generation 

 

Population data is generated in the R software (R Core Team, 2018). Schools have the subscript h 

(h = 1, …, H). Students within school h have the subscript k (k = 1, …, nh, where nh is the total number of 

students in school h, or the within school population size). We generated two school-level random covari-

ates, 𝑉1,h ∼ 𝑁(0, 1), and 𝑉2,h ∼ Bernoulli(0.5). We generate one student-level covariate 𝑋hk ∼ 𝑁(𝑉1,h, 1), 

and the mean of 𝑋hk within school h equals to the school-level variable 𝑉1,h, because student characteristics 

are usually correlated with school characteristics.  

We simulated two potential outcomes for each individual. 𝑦hk(0) is the response when student k 

in school h is assigned to the control condition. It depends on school- and student-level covariates, and 

their interactions, as detailed in Equation 2.1. 𝑦hk(1) is the response when student k in school h is assigned 

to the treatment condition. It depends on the student’s potential outcome under the control condition, 

𝑦hk(0), plus a treatment effect, ϕ0 + ϕ1𝑋hk. ϕ0, and ϕ1 reflect the degree of impact by school-, student-

level variables and their interactions on student treatment effects. Specifically, π30 is the unconditional av-

erage treatment effect; π31 and π32 are the main effects of school-level variables 𝑉1,h and 𝑉2,h on the aver-

age treatment effect; π40 is the main effect of the student-level variable 𝑋hk on the average treatment ef-

fect; π41 and π42 are the impacts of cross-level interactions on the average treatment effect. 

𝑦hk(1) = 𝑤0 + 𝑤1𝑋hk + ϕ0 + ϕ1𝑋hk   (2.1) 

𝑤0 = π00 + π01𝑉1,h + π02𝑉2,h 

𝑤1 = π10 + π11𝑉1,h + π12𝑉2,h 

ϕ0 = π30 + π31𝑉1,h + π32𝑉2,h 

ϕ1 = π40 + π41𝑉1,h + π42𝑉2,h 
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𝑦hk(0) = 𝑤0 + 𝑤1𝑋hk      

𝑤0 = π00 + π01𝑉1,h + π02𝑉2,h 

𝑤1 = π10 + π11𝑉1,h + π12𝑉2,h 

Treatment effecthk = 𝑌hk(1) − 𝑦hk(0) = ϕ0 + ϕ1𝑋hk = π30 + π31𝑉1,h + π32𝑉2,h + π40𝑋hk +

                           π41𝑉1,h𝑋hk + π42𝑉2,h𝑋hk    (2.1.1) 

Next, we used selection models at the school and student levels to determine participating schools 

and students in the study for each simulated experiment. Schools were selected for the study based on the 

result of a randomly generated Bernoulli variable 𝑆h, 𝑆h ~ Bernoulli(𝑝h), 𝑆h = 1 or 0, indicating whether 

school h is in the sample. The other school level covariate only impacts within school selection probabili-

ties. The average percentage of the schools that select into a study can be determined by the values of coef-

ficients in Equation 2.2. In any one replication, the percentage of schools that self-select into the study is 

random. Within a replication, for each school, h, selected for the study, we generated a treatment indicator 

𝑍h~Bernoulli(0.5) which on average assigns 50% of schools into the treatment group (the simulation 

study assumes a school-randomized experiment).  

ln (
𝑝h

1−𝑝h
) = α0 + α1𝑉1,h   (2.2) 

Selection of students within schools into the study sample is determined based on the outcome of 

the random variable 𝑆h ~ Bernoulli(𝑝hk), where 𝑝hk = P(𝑆hk = 1|𝑆h = 1). 𝑆hk = 1 or 0, indicating 

whether student k in school h is in the sample. Student selection probability is determined by a multilevel 

logistic regression based on the student-level covariate, school-level covariates, and their interactions. The 

average percentage of the students that select into the study can be determined by the values of coefficients 

in Equation 2.3. In any one replication, the percentage of students who self-select into a study is random. 

Both 𝑉1,h and 𝑉2,h are predictors of the selection of students into the within school study sample in Equa-

tion 2.3, but only 𝑉1,h predicts the school selection in Equation 2.2. The distinction is intentional because it 

is unlikely that the school level variables that predict school and student selection are exactly the same.  

ln(
𝑝hk

1−𝑝hk
) = η0h + η1h𝑋hk                                                            (2.3) 

η0h = τ00 + τ01𝑉1,h + τ02𝑉2,h 

η1h = τ10 + τ11𝑉1,h + τ21𝑉2,h 

 

 

True SATE and Estimators of PATE 

 

All estimation was run in STATA 15 SE. First, the true sample average treatment effect (SATE) 

was calculated. Even though it is not an estimator, we compare it with the estimators to show how much 

bias is caused by the within and between and school selection processes after eliminating error caused by 

the randomization process. The true SATE is the average of 𝑦ℎ𝑘(1) minus 𝑦ℎ𝑘(0) for the selected sample 

for each replication.  

The first estimator that is considered is labelled the unadjusted ATE. It is the unadjusted, internally 

valid estimator of the ATE in the study sample. It is the estimate of γ01 in the unweighted hierarchical line-

ar model specified by Equation 2.4. This estimator is internally valid because the treatments are randomly 

assigned within each study sample for a given replication. It is not externally valid unless samples of 

schools and students are randomly selected from the population.  

   𝑦hk = β0h + εhk , εhk ∼ 𝑁(0, σ2)        (2.4) 

β0h = γ00 + γ01𝑍h + u0h,  u0h ∼ 𝑁(0, τ) 
 

The second estimator considered is labelled IPP-School, and is estimated by applying the school-

level IPP weights to the second level of the outcome model in Equation 2.4. The school selection probabil-
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ity is estimated using a single level logistic regression model as described in Equation 2.2. School weights 

are computed as the inverse of the selection probabilities, 𝑤ĥ =
1

𝑝ĥ
.  

The third estimator is IPP-School+Student-separate (IPPSS). It is estimated by adding school IPP 

weights to the second level, and also student IPP weights to the first level of the outcome model in Equa-

tion 2.4. School IPP weights are again estimated by Equation 2.2. Student probability of selection into the 

study is estimated using a separate single-level logistic regression model for each participating school 

(𝑆h = 1) (Equation 2.5). This predicted selection probability is a conditional probability, 𝑝hk|h = Pr(𝑆hk =

1|𝑆h = 1). These logistic models are estimated using the STATA command logit and individual probabili-

ties are predicted by the pred command. 

ln (
𝑝hk

1−𝑝hk
|𝑆h = 1) = η0h + η1h𝑋hk   (2.5) 

Even though this student selection model does not include any school level covariates that are in the true 

student selection model (Equation 2.3), it allows each school to have its own intercept η0h and slope η1h. We ex-

pect that school-specific intercepts 𝜂0ℎ will account for the variation in selection probabilities due to school char-

acteristics (τ00 + τ01𝑉1,h + τ02𝑉2,h), and school-specific slopes η1h𝑋hk will account for the variation due to stu-

dent characteristics and their interaction with school characteristics (τ10𝑋hk + τ11𝑉1,h𝑋hk + τ12𝑉2,h𝑋hk).  

The fourth estimator is labelled IPP-School+Student-multi (IPPSSM). It is estimated by adding 

the school IPP weights to the second level, and student IPP weights to the first level of the outcome model 

in Equation 2.4. School IPP weights are again estimated by Equation 2.2. The student weights are estimated 

using a multilevel logistic regression model with student-level and school-level covariates (using observa-

tions in selected schools only), and their interactions (Equation 2.6). These multilevel logistic models are 

estimated using STATA command gllamm (Rabe-Hesketh, Skrondal, & Pickles, 2004; StataCorp, 2017). 

Individual probabilities are predicted by the pred and gllapred commands, respectively.  

ln(
𝑝hk

1−𝑝hk
|𝑆h = 1) = η0h + η1h𝑋hk                     (2.6) 

η0h = τ00 + τ01𝑉1,h + τ02𝑉2,h + u0j 

η1h = τ10 + τ11𝑉1,h + τ21𝑉2,h + u1j 

The fifth estimator is called IPP-School+Student-multi miss (IPPSSM (miss)). It is estimated by 

adding the school IPP weights to the second level, and student IPP weights to the first level of the outcome 

model in Equation 2.4. School IPP weights are again estimated by Equation 2.2. The student weights are es-

timated using Equation 2.7. The model is missing a school-level covariate 𝑉2,h from Equation 2.6. We hy-

pothesize that a multilevel random effects model protects against missing level-2 covariates because the miss-

ing information goes into the cluster specific random slopes and intercepts. In other words, the missing terms 

τ02𝑉2,h and τ02𝑉2,h𝑋hk from Equation 2.6 will add to the variation of the u0j and u1j terms in Equation 2.7.  

ln(
𝑝hk

1−𝑝hk
|𝑆h = 1) = η0h + η1h𝑋hk         (2.7) 

η0h = τ00 + τ01𝑉1,h + u0j 

η1h = τ10 + τ11𝑉1,h + u1j 

The mixed procedure in STATA 15 was used to run all the multilevel (weighted) outcome models, 

due to its capability of correctly handling survey weights (West & Galecki, 2011). All weights are speci-

fied as sampling weights.  

 

 

Simulation Conditions 

 

The simulation varies the population size, the within school participation rate, and the ran-

dom/nonrandom selection process. Table 1 shows a summary of the simulation conditions. Table 2 shows 

the parameter values that correspond to each simulation condition. 
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TABLE 1 

Simulation conditions 

 

 Conditions Explanation 

Population size 

H = 2,000,  𝑛h ∼ 𝑁(200, 80), 
min = 10, max = 700 

Two thousand schools in the population; simulates  

schools in a State as the population.  

H = 50, 𝑛h ∼ 𝑁(250, 60),  
min = 25, max = 330 

Fifty schools in the population; simulates a midsized 

school district as the population. 

Population  

treatment effect  

distribution 

TE main effect 

In the population, treatment effect is impacted by the  

characteristics of schools and students. The strength  

of these impacts are constant in all schools. 

TE interaction 

In the population, treatment effect is impacted by the  

characteristics of schools and students. The strength  

of the impacts of the student characteristics depend  

on the characteristics of the school the student is in. 

Sample selection  

process 

Random school and student 

Schools are randomly selected into the study. Within  

those schools, students are randomly selected into the 

study. 

Nonrandom school, random student 

Schools volunteer into the study with unequal  

probabilities. Within those schools, students are  

randomly selected into the study. 

Nonrandom school and student 

Schools volunteer into the study with unequal  

probabilities. Within those schools, students volunteer  

into the study with unequal probabilities. 

Nonrandom school, nonrandom  

student, and interaction 

Schools volunteer into the study with unequal  

probabilities. Within those schools, students volunteer 

into the study with unequal probabilities. The impact  

of student characteristics on the probability of  

volunteering into a study depends on the  

characteristics of the school the student is in. 

Participation rate 

School 12%, within school 50% 

On average over replications, 12% schools participate  

in the study; 50% of students in each participating  

school participate in the study.  

School 12%, within school 25% 

On average over replications, 12% schools participate  

in the study; 25% student in each participating school  

participate in the study. 

 

Population size. We generated two different populations, corresponding to two different, poten-

tially policy relevant populations of interest. The first is a large population of H = 2,000 schools. The 

school size follows a truncated normal distribution with a mean of 200, standard deviation of 80, a mini-

mum of 10, and maximum of 700 students. The distribution mimics the population of Grade 1 and Grade 2 

students in public elementary schools in the state of Florida in the United States. The second population is 

a small group of H = 50 schools, which mimics the population of Grade 1 and Grade 2 students in a single 

large school district in the state of Florida.  

(1) H = 2000,  𝑛h ∼ 𝑁(200, 80), min = 10, max = 700 

(2) H = 50, 𝑛h ∼ 𝑁(250, 60), min = 25, max = 330  
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TABLE 2 

Simulation results for unbalanced sample parameter values for Equations 2.1.1, 2.2, and 2.3 in correspondence with simulation conditions 

 

A. Population size H = 50; Population treatment effect model = TE main effect. 

 

 

 

 

H = 50 Parameters 

Sample Selection Process 

Random 

school and  

student 

Nonrandom  

school, random 

 student 

Nonrandom  

school and  

student 

Nonrandom  

school, non-

random  

student, and  

interaction 

Random 

school and 

student 

Nonrandom  

school, random 

student 

Nonrandom  

school and  

student 

Nonrandom  

school, non-

random  

student, and  

interaction 

Population  

treatment effect 

model 

(Equation 2.1.1) 

π30 1 1 1 1 1 1 1 1 

π31 1 1 1 1 1 1 1 1 

π32 1 1 1 1 1 1 1 1 

π40 1 1 1 1 1 1 1 1 

π41 0 0 0 0 0 0 0 0 

π42 0 0 0 0 0 0 0 0 

School selection 

parameters  

(Equation 2.2) 

α0 ‒2 ‒2.5 ‒2.5 ‒2.5 ‒2 ‒2.5 ‒2.5 ‒2.5 

α1 0 1 1 1 0 1 1 1 

Student selection 

parameters 

(Equation 2.3) 

τ00 0 0 -4 -5 -1 -1 -6 -9 

τ01 0 0 1 1 0 0 1 1 

τ10 0 0 2 2 0 0 2 2 

τ11 0 0 0 1 0 0 0 1 

τ02 0 0 1 1 0 0 1 1 

τ12 0 0 0 1 0 0 0 1 

Participation rates School 12%, student 50% School 12%, student 25% 
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B. Population size H = 50; Population treatment effect model = TE interaction. 

H = 50 Parameters 

Sample Selection Process 

Random 

school and  

student 

Nonrandom  

school, random 

 student 

Nonrandom  

school and  

student 

Nonrandom  

school, non-

random  

student, and  

interaction 

Random 

school and 

student 

Nonrandom  

school, random 

student 

Nonrandom  

school and  

student 

Nonrandom  

school, non-

random  

student, and  

interaction 

Population  

treatment effect 

model 

(Equation 2.1.1) 

π30 0 0 0 0 0 0 0 0 

π31 1 1 1 1 1 1 1 1 

π32 1 1 1 1 1 1 1 1 

π40 1 1 1 1 1 1 1 1 

π41 1 1 1 1 1 1 1 1 

π42 1 1 1 1 1 1 1 1 

School selection 

parameters  

(Equation 2.2) 

α0 ‒2 ‒2.5 ‒2.5 ‒2.5 ‒2 ‒2.5 ‒2.5 ‒2.5 

α1 0 1 1 1 0 1 1 1 

Student selection 

parameters 

(Equation 2.3) 

τ00 0 0 ‒4 ‒5 ‒1 ‒1 ‒6 ‒10 

τ01 0 0 1 1 0 0 1 1 

τ10 0 0 2 2 0 0 2 2 

τ11 0 0 0 1 0 0 0 1 

τ02 0 0 1 1 0 0 1 1 

τ12 0 0 0 1 0 0 0 1 

Participation rates School 12%, student 50% School 12%, student 25% 
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C. Population size = 2,000; Population treatment effect model = TE main effect 

 

 

 

  

H = 2,000 Parameters 

Sample Selection Process 

Random 

school and  

student 

Nonrandom  

school, random 

 student 

Nonrandom  

school and  

student 

Nonrandom  

school, non-

random  

student, and  

interaction 

Random 

school and 

student 

Nonrandom  

school, random 

student 

Nonrandom  

school and  

student 

Nonrandom  

school, non-

random  

student, and  

interaction 

Population  

treatment effect 

model 

(Equation 2.1.1) 

π30 1 1 1 1 1 1 1 1 

π31 1 1 1 1 1 1 1 1 

π32 1 1 1 1 1 1 1 1 

π40 1 1 1 1 1 1 1 1 

π41 0 0 0 0 0 0 0 0 

π42 0 0 0 0 0 0 0 0 

School selection  

parameters  

(Equation 2.2) 

α0 ‒2 ‒2.5 ‒2.5 ‒2.5 ‒2 ‒2.5 ‒2.5 ‒2.5 

α1 0 1 1 1 0 1 1 1 

Student selection 

parameters 

(Equation 2.3) 

τ00 0 0 ‒3 ‒4 ‒1 ‒1 ‒5.5 ‒8 

τ01 0 0 1 1 0 0 1 1 

τ10 0 0 2 2 0 0 2 2 

τ11 0 0 0 1 0 0 0 1 

τ02 0 0 1 1 0 0 1 1 

τ12 0 0 0 1 0 0 0 1 

Participation rates School 12%, student 50% School 12%, student 25% 
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D. Population size = 2,000; Population treatment effect model = TE interaction 

 

 

 

 

 

 

H = 2,000 Parameters 

Sample Selection Process 

Random 

school and  

student 

Nonrandom  

school, random 

student 

Nonrandom  

school and  

student 

Nonrandom  

school, non-

random  

student, and  

interaction 

Random 

school and 

student 

Nonrandom  

school, random 

student 

Nonrandom  

school and  

student 

Nonrandom  

school, non-

random  

student, and  

interaction 

Population  

treatment effect 

model 

(Equation 2.1.1) 

π30 0 0 0 0 0 0 0 0 

π31 1 1 1 1 1 1 1 1 

π32 1 1 1 1 1 1 1 1 

π40 1 1 1 1 1 1 1 1 

π41 1 1 1 1 1 1 1 1 

π42 1 1 1 1 1 1 1 1 

School selection  

parameters  

(Equation 2.2) 

α0 ‒2 ‒2.5 ‒2.5 ‒2.5 ‒2 ‒2.5 ‒2.5 ‒2.5 

α1 0 1 1 1 0 1 1 1 

Student selection 

parameters 

(Equation 2.3) 

τ00 0 0 ‒3 ‒4 ‒1 ‒1 ‒5.5 ‒8 

τ01 0 0 1 1 0 0 1 1 

τ10 0 0 2 2 0 0 2 2 

τ11 0 0 0 1 0 0 0 1 

τ02 0 0 1 1 0 0 1 1 

τ12 0 0 0 1 0 0 0 1 

Participation rates School 12%, student 50% School 12%, student 25% 
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Population treatment effect model. In the population, the treatment effects are moderated by the 

school level covariates, student level covariates, and their interactions, as shown in Equation 2.1. We speci-

fied two conditions for the treatment effect model, the TE main effect condition and the TE interaction 

condition. In the TE main effect condition, the treatment effects are predicted by school and student level 

covariates, but there is no interaction effect. It means that the strength of the impact of the school and student 

characteristics on individual level treatment effects are equal in all schools. We set the value of π30 = π31 =

π32 = π40 = 1 and π41 = π42 = 0 in Equation 2.1.1, resulting in the following equation for the treatment effect:  

Treatment effecthk = 1 + 𝑉1,h + 𝑉2,h + 𝑋hk         (2.8) 

In the TE interaction condition, the treatment effects are predicted by school and student level co-

variates, and their interactions. It means that the strength of the impact of the student characteristics on in-

dividual level treatment effects depend on the school’s characteristics. In this scenario, the inclusion of stu-

dent IPP weights may be more important because the student characteristics lead to greater difference in 

school-specific average treatment effects between schools with low and high values of 𝑉1,h and 𝑉2,h. We set 

the value of π30 = 0 and π31 = π32 = π40 = π41 = π42 = 1 in Equation 2.1.1, resulting in the following equa-

tion for the treatment effect: 

Treatment effecthk = 𝑉1,h + 𝑉2,h + 𝑋hk + 𝑉1,h𝑋hk + 𝑉2,h𝑋hk            (2.9) 

Holding other factors constant, the true PATE for the TE main effect condition and the TE interac-

tion condition are approximately the same (differing only as a result of simulation error in the population 

level simulations). We expected that for the TE interaction condition, inclusion of student IPP weights will 

reduce more bias than for the TE main effects condition. 

Sample selection processes. We varied the sample selection processes at the school and student 

levels by varying the coefficient value of the school and student covariates in Equations 2.2 and 2.3. There 

are four sample selection conditions. First, the random school and student selection condition selects 

school and student randomly at both stages. The parameters in the selection models (Equations 2.2 and 2.3) 

are set to be zero except for the intercepts α0 and τ00. Second, the nonrandom school, random student con-

dition sets α1 = 1. All other parameters in Equation 2.3 are set to be zero except the intercept τ00. Third, 

the nonrandom school, nonrandom student condition again sets α1 = 1 in Equation 2.2. It also sets τ01 =

τ02 = 1, τ10 = 2 and τ11 = τ12 = 0 in Equation 2.3. By setting τ11 = τ12 = 0, student selection into the with-

in school sample are affected by the student’s characteristics and the characteristics of the school, and the 

effects are the same across all schools. Fourth, the nonrandom school, nonrandom student, interaction 

condition again sets α1 = 1 in Equation 2.2. It sets τ01 = τ02 = τ11 = τ12 = 1, τ10 = 2 in Equation 2.3. Stu-

dent selection into the within school sample is affected by the student’s characteristics and the characteris-

tics of the school, and the strength of the impact of student characteristics depend on the characteristics of 

the school the student is in.  

Within school participation rates. In this study, the selection of a school into a study is a Bernoulli 

random variable. The selection of a student into the study in his or her school is also a Bernoulli random 

variable. Therefore, for any particular replication, the number of schools that select into the sample and the 

number of students that select into the within school samples are random. The school and within school se-

lection rates were set by varying the values of intercepts (α0 and τ00) in the selection models, Equations 

2.2 and 2.3. The specific values of these parameters were varied for the different simulations, as shown in 

Table 2. Each condition requires different intercept values to achieve the desired participation rates, be-

cause the values of other parameters are different across conditions and the intercept values have to be ad-

justed accordingly. The value of α0 was selected so that in each simulation condition, approximately 12% 

of schools select into the sample across replications. The value of τ00 was set so that in each simulation 
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condition, the average percentage of students who select into the within school sample across all schools 

that select into the sample in that particular replication, is approximately 25% or 50%.  

Due to the fact that the selection of a school is a Bernoulli random variable, for a particular repli-

cation, there is a nonzero probability that zero schools are selected into the sample. To solve this problem, 

in the large school population (H = 2,000) conditions, the selection of schools was repeated until at least 10 

schools are selected. In the small school population size (H = 50) conditions, the simulation procedure re-

peated the Bernoulli trials until exactly six schools were selected into the sample. In the treatment assign-

ment step, we randomly assigned three schools to the treatment and three schools to the control condition.  

Evaluation criteria. For each condition, 200 replications were simulated. The estimators were 

evaluated by computing the mean standardized bias and root standardized mean square error (RSMSE). 

The bias and root mean squared error were divided by the standard deviation of the real treatment effects in 

the population to make the magnitude of the bias and RMSE comparable across simulation conditions.  

 

 

SIMULATION RESULTS 

 

Sample Selection Conditions 

 

The standardized bias and RSMSE of the estimators are shown in Table 3. 

Random school and student. When the selection process is random at both the school and the stu-

dent level, all estimators perform similarly well. The standardized biases of all estimators are less than 0.1 

standard deviations away from the true PATE when school population size is H = 50 and less than 0.01 

standard deviations away from the true PATE when school population size is H = 2,000. The RSMSE is 

less than one standard deviation in all cases. All estimators have bigger RSMSEs than the true SATE be-

cause the true SATE is only affected by error from the within and between selection process, while other 

estimators are also affected by the randomization error and the estimation error. The standardized bias and 

RSMSE of the unadjusted ATE and the IPP weighted estimators are similar. The unadjusted ATE has 

slightly smaller standardized bias than the IPP weighted estimators, but the difference is within 0.01 stand-

ard deviations of the treatment effects in their respective populations. This result suggests that even when 

the school and student samples are both randomly selected, applying the IPP weights does not damage the 

performance of the estimators. 

Nonrandom school, random student. When the selection process is nonrandom at the school level 

and random at the student level, the IPP-school estimator has smaller standardized bias than the unadjusted 

ATE in both population sizes. The three IPP-school+student estimators show similar performances to the 

IPP-School estimator. The RSMSE of the IPP-school compared to the unadjusted ATE show different pat-

terns in the two population sizes. When the population size is large (H = 2,000), the RSMSE of the IPP-

school is substantially smaller than the unadjusted ATE, with its magnitude being a quarter of the RSMSE 

of the unadjusted ATE. When population size is small (H = 50), the RSMSE of the IPP-school, surprising-

ly, is larger than that of the unadjusted ATE, indicating that the unadjusted ATE is the more accurate esti-

mator. This result can be attributed to the trade-off between bias and variance. The IPP-school is less bi-

ased than the unadjusted ATE in both populations because the IPP school weights adjusts away bias caused 

by the nonrandom selection of the school sample. On the other hand, adding weights to the sample increas-

es variance (Lohr, 2009). When the school population size is 50 and school participation rate is 12%, 
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TABLE 3 

Standardized bias and RSMSE for true SATE and PATE estimators 

Population  

parameters 

Within school 

participation  
rate 

Estimators 

Sample Selection Process 

Random school  

and student 

Nonrandom school 

random student 

Nonrandom school  

and student 

Nonrandom school 
nonrandom student  

interaction 

Std. Bias RSMSE Std. Bias RSMSE Std. Bias RSMSE Std. Bias RSMSE 

H = 50  
TE main effects  

50% 

True SATE 0.001 0.361 0.765 0.820 1.451 1.472 1.527 1.533 

Unadjusted ATE 0.017 0.806 0.826 1.183 1.212 1.835 1.049 1.683 

IPP-School ‒0.018 0.779 0.549 1.294 0.913 1.645 0.765 1.708 

IPPSSS ‒0.019 0.778 0.548 1.292 0.614 1.462 0.476 1.601 

IPPSSM ‒0.022 0.785 0.538 1.295 0.608 1.468 0.483 1.572 

IPPSSM (miss) ‒0.018 0.779 0.549 1.294 0.625 1.470 0.489 1.571 

25% 

True SATE 0.003 0.367 0.765 0.821 1.697 1.716 1.852 1.856 

Unadjusted ATE 0.014 0.805 0.832 1.189 1.332 1.913 1.488 2.014 

IPP-School ‒0.020 0.780 0.556 1.300 1.081 1.740 1.384 2.130 

IPPSSS ‒0.019 0.778 0.547 1.291 0.793 1.546 1.108 1.901 

IPPSSM ‒0.024 0.787 0.541 1.297 0.781 1.512 1.097 1.898 

IPPSSM (miss) ‒0.020 0.782 0.553 1.298 0.789 1.514 1.114 1.905 

H = 50 

TE interaction  

50% 

True SATE ‒0.024 0.334 0.751 0.830 1.733 1.795 1.760 1.775 

Unadjusted ATE ‒0.018 0.750 0.780 1.120 1.215 1.673 1.101 1.511 

IPP-School ‒0.093 0.719 0.434 1.156 0.737 1.294 0.685 1.352 

IPPSSS ‒0.094 0.718 0.433 1.152 0.429 1.117 0.396 1.230 

IPPSSM ‒0.092 0.723 0.426 1.160 0.428 1.122 0.395 1.201 

IPPSSM (miss) ‒0.092 0.720 0.434 1.155 0.440 1.122 0.399 1.201 

25% 

True SATE ‒0.021 0.338 0.750 0.831 2.193 2.254 2.470 2.480 

Unadjusted ATE ‒0.021 0.748 0.785 1.126 1.413 1.824 2.032 2.265 

IPP-School ‒0.095 0.721 0.441 1.162 0.971 1.455 1.863 2.220 

IPPSSS ‒0.095 0.719 0.432 1.151 0.623 1.233 1.476 1.861 

IPPSSM ‒0.095 0.724 0.429 1.162 0.601 1.189 1.422 1.835 

IPPSSM (miss) ‒0.095 0.722 0.437 1.159 0.606 1.188 1.452 1.842 

         (Table 3 continues) 
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Note. The table shows standardized bias and RSMSE of the true SATEs and five PATE estimators averaged over 200 simulated datasets for each condition discussed in the text. The stand-

ardized bias is the bias of the SATE divided by the standard deviation of the treatment effects in the population. RSMSE is the root mean square error of the SATE divided by the standard 

deviation of the treatment effects in the population. The SATE refers to the true sample average treatment effects in the sample. Unadjusted ATE refers to the internally valid ATE estimat-

ed by a “naive” model that does not take into account sampling bias. IPP-school applies the school-level weight. The IPPSSS refers to the IPP-school+student-separate estimator. It applies 

the school-level weight and student-level weight estimated by single level propensity score models in each school. IPPSSM refers to the IPP-school+student-multi estimator. It applies the 
school-level weight and student-level weight estimated by a multilevel propensity score model for all sample schools. IPPSSM (miss) refers to the IPP-school+student-multi miss estima-

tor. It applies the school-level weight and student-level weight estimated by a multilevel propensity score model that omits one school-level covariate.  

Table 3 (continued)          

Population  

parameters 

Within school 
participation  

rate 

Estimators 

Random school  
and student 

Nonrandom school 
random student 

Nonrandom school  
and student 

Nonrandom school 

nonrandom student  
interaction 

Std. Bias RSMSE Std. Bias RSMSE Std. Bias RSMSE Std. Bias RSMSE 

H = 2,000 

TE main effects  

50% 

True SATE ‒0.003 0.055 0.735 0.737 1.441 1.442 1.420 1.421 

Unadjusted ATE ‒0.003 0.134 0.708 0.753 1.072 1.100 1.094 1.110 

IPP-School 0.004 0.133 0.010 0.208 0.611 0.649 0.684 0.730 

IPPSSS 0.004 0.133 0.010 0.207 0.304 0.358 0.396 0.455 

IPPSSM 0.004 0.133 0.010 0.208 0.319 0.375 0.405 0.465 

IPPSSM (miss) 0.004 0.133 0.010 0.208 0.320 0.376 0.405 0.465 

25% 

True SATE ‒0.002 0.055 0.736 0.740 1.821 1.821 1.824 1.824 

Unadjusted ATE 0.001 0.132 0.695 0.733 1.313 1.338 1.487 1.499 

IPP-School 0.008 0.131 0.010 0.181 0.944 0.969 1.306 1.323 

IPPSSS 0.008 0.131 0.008 0.182 0.637 0.662 1.035 1.052 

IPPSSM 0.007 0.131 0.011 0.181 0.643 0.673 1.052 1.071 

IPPSSM (miss) 0.007 0.131 0.011 0.181 0.644 0.674 1.053 1.072 

H = 2,000 

TE interaction  

50% 

True SATE ‒0.002 0.053 0.773 0.778 1.770 1.772 1.713 1.714 

Unadjusted ATE 0.005 0.117 0.725 0.759 1.145 1.166 1.169 1.181 

IPP-School 0.010 0.117 0.013 0.142 0.427 0.461 0.603 0.652 

IPPSSS 0.010 0.117 0.013 0.142 0.118 0.186 0.265 0.344 

IPPSSM 0.009 0.117 0.013 0.143 0.136 0.202 0.278 0.351 

IPPSSM (miss) 0.009 0.117 0.013 0.143 0.136 0.201 0.278 0.352 

25% 

True SATE ‒0.002 0.053 0.771 0.775 2.527 2.528 2.526 2.527 

Unadjusted ATE 0.005 0.116 0.726 0.759 1.512 1.530 1.805 1.814 

IPP-School 0.010 0.117 0.012 0.143 0.854 0.874 1.440 1.462 

IPPSSS 0.010 0.116 0.011 0.141 0.449 0.473 1.010 1.034 

IPPSSM 0.010 0.117 0.012 0.143 0.440 0.469 1.018 1.042 

IPPSSM (miss) 0.009 0.117 0.012 0.143 0.440 0.470 1.020 1.044 
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the sample only consists of six schools. The small number of clusters combined with the addition of sam-

pling weights increased the variance of the estimators enough to overcome the decrease in bias in the 

RSMSE. When the school population size is 2,000 and the school participation rate is 12%, the average 

school sample consists of 240 schools. The large cluster sample size offset the increase in the variance of 

the estimators due to weights, and as a result most of the mean squared error is due to bias. 

Nonrandom school and student. When the selection processes are nonrandom at both the school 

and student level, and the selection probabilities was predicted by the main effects only, the three IPP-

school+student estimators outperform the IPP-school and the unadjusted ATE estimators with respect to 

both standardized bias and RSMSE. The reduction in standardized bias and RSMSE is on the order of 20 to 

40% when H = 50, and 40 to 70% when H = 2,000. Amongst the three IPP-school+student estimators, per-

formance is similar. The IPPSSM (miss) always underperform compared to the IPPSSM since the former is 

missing a school-level covariate in the model for estimating the student IPP weight. However, the differ-

ence in performance is small. When school population size is 50, the difference in standardized bias be-

tween the two estimators is less than 0.02 standard deviations. When school population size is 2,000, the 

performances of these two estimators are almost exactly the same. This result suggests that the misspecifi-

cation of the model for estimating the student IPP weights is offset by the inclusion of random intercepts 

and slopes. The performance of IPPSSS compared to the IPPSSM depends on school population size. 

When school population size is 50, the IPPSSM has smaller standardized bias than the IPPSSS. The 

IPPSSM also has smaller RSMSE than the IPPSSS when the within school participation rate is 25%, but 

not necessarily when the within school participation rate is 50%. When school population size is 2,000, the 

IPPSSS has smaller standardized bias and RSMSE than the IPPSSM across most conditions. The order is 

reversed, however, under the TE interaction and within school participation rate is 25%. The difference in 

performance between these two estimators is small. The difference in standardized bias and RSMSE be-

tween these two estimators is less than 0.04 standard deviations in all population size, population treatment 

effect and participation rate conditions. The observed patterns were expected, as the IPPSSM method is 

more advantaged when there are fewer schools and smaller within school sample sizes. 

Nonrandom school, nonrandom student, interaction. When the selection processes are nonrandom 

at both school and student levels, and student selection is predicted by school and student characteristics 

and their interaction, the three IPP-school+student estimators again perform better than the IPP-school and 

the unadjusted ATE. The performance of the IPP-school compared to the unadjusted ATE depends on the 

school population size and population treatment effect distribution. When school population size is 50, the 

IPP-school always has smaller standardized bias than the unadjusted ATE. The IPP-school estimators have 

larger RSMSE than the unadjusted ATEs under TE main effects. When the school population size is 2,000, 

the IPP-school always perform better than the unadjusted ATE, having smaller standardized bias and 

RSMSE. Amongst the three estimators that adjust for within school selection, the performance was similar. 

The IPPSSM (miss) always underperforms compared to the IPPSSM, due to the obvious reason that the 

former is misspecified in the model for estimating the IPP student weight. The relative performance of the 

IPPSSS and IPPSSM depends on the school population size. When the school population size is 50, the 

IPPSSM has lower standardized bias than the IPPSSS when the within school participation rate is 25%, and 

similar or higher standardized bias than the IPPSSS when the within school participation rate is 50%. The 

IPPSSM has lower RSMSE than IPPSSS when the population size is 50. The difference in the performance 

of these three estimators is small — within 0.1 standard deviations of the treatment effects in their respec-

tive populations. When school population size is 2,000, the IPPSSS performs slightly better than the 

IPPSSM across population treatment effect models and within school participation rates, but the difference 
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is less than 0.02 standard deviations of treatment effects in their respective populations. Again, the ob-

served patterns were expected, as the IPPSSM method is more advantaged when there are fewer schools 

and smaller within school sample sizes. 

 

 

Within School Participation Rate 

 

When the sample selection process is random at the student level, each estimator has similar 

standardized bias and RSMSE under the 50% and 25% within school participation rate conditions. As long 

as within school selection is random, smaller within school participation rates have little impact on the bias 

of the estimators. When the sample selection process is nonrandom at student level, each estimator performs 

better when the within school participation rate is 50% than when it is 25%. This is because the 25% within 

school participation rate selects not only fewer students per schools, but also more biased student samples. 

 

 

TE Main Effect versus TE Interaction 

 

Averaging across the other conditions, the TE interaction conditions have higher standardized bias 

and RSMSE in the SATE than the TE main effects conditions. Comparing performance of the same estima-

tor between TE main effect and TE interaction while holding all other conditions constant, the unadjusted 

ATE generally performs better in the TE main effects condition and the IPP weighted estimators generally 

perform equally well or better under the TE interaction condition. The performance of the unadjusted ATE 

can be easily explained by the fact that the TE interaction conditions have higher standardized bias and 

RSMSE in the SATE to begin with than the TE main effects conditions. Consequently, the superior per-

formance of the IPP weighted estimators under the TE interaction conditions compared to the TE main ef-

fect conditions means that the IPP weights are able to reduce more bias under the TE interaction conditions 

than under the TE main effect conditions. The stronger reduction in bias by the IPP weights can be ex-

plained by the fact that under TE interaction conditions, the individual treatment effects in the population 

are more dependent upon the school and student-level covariates, and adjusting for the nonrandom selec-

tion of schools and students is more impactful in reducing bias and improving the accuracy of the estimates 

of the PATE. The only exception is when the school population size is 50, sample selection process is non-

random school, nonrandom student, and interaction, and the within school participation rate is 25%. Under 

these conditions, each estimator has smaller standardized bias in the TE main effect than in the TE interac-

tion condition. This condition may be anomalous because the selection probabilities in this condition are 

highly variable and the average participation rate is low, thus yielding schools with very small within 

school sample sizes. The combination of small between and within school sample sizes may make it too 

difficult to estimate weights accurately. Since standardized bias in the SATE in the TE interaction condition is 

higher to begin with, it remained higher after adjustment when the weights are imprecisely estimated.  

 

 

School Population Size 

 

The performance ranking of estimators within each condition are for the most part the same in the 

H = 2,000 and H = 50 conditions, with a few aforementioned exceptions. All estimators perform remarka-

bly better in the H = 2,000 than in the H = 50, with smaller standardized bias and RSMSE. This is the result 

of larger sample sizes in the H = 2,000 condition.  
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Summary of Simulation Results 

 

This simulation study found that applying IPP weights that account for both levels of a multilevel 

selection process generally improves the performance of the estimators of PATE. When schools are non-

randomly selected, applying the school IPP weight reduces the standardized bias of the estimator compared 

to the unadjusted ATE. However, when the number of schools in the study is small the increased variance 

due to reweighting means that no improvement in RSMSE is observed. The RSMSEs of the rewighted es-

timators are smaller than the unadjusted ATE only when the number of schools in the experimental sample 

is large. When schools and students are both nonrandomly selected, applying both the school IPP weight 

and the student IPP weight improves the performance of the estimator relative to the IPP-school and the 

unadjusted ATE estimators. Therefore, applying IPP weights always reduces the standardized bias in the 

estimator for PATE, when the sample is nonrandomly selected. This is true regardless of how the IPP 

weights are constructed. However, reweighting increases the RSMSE of the estimator through the inflation 

of variance if the sample size is small.  

The model for estimating the student IPP weights has little impact on the performance of these 

weights. IPPPSSM performs better than IPPSSS when the school population size is small and the reverse is 

true when the school population size is large. IPPSSM (miss) shows slightly worse performance compared 

to IPPSSM, but the difference is small. This indicates that the random effects model for estimating student 

probability of participation provides protection against missing school-level covariates due to school-

specific random intercepts and slopes. In addition, the IPPSSS estimator also protects against missing 

school-level covariates because it does not need school level covariates in the model (since different mod-

els are used for each school).  

Given the same school-level participation rate of 12%, all estimators perform better when the 

school population size is large, which can be explained by the larger sample sizes of schools. The smaller 

(25%) within school participation rates in this study leads to smaller and more biased samples. Conse-

quently, the estimators perform less well in the 25% within school participation rate conditions than in the 

50% conditions. However, the within school participation rate does not affect the order of the performance 

rankings among the estimators. 

Under the TE interaction conditions, the IPP weighted estimators generally perform better than 

under TE main effect conditions, and have larger reduction in standardized bias and RSMSE compared to 

the unadjusted ATE. This is because under the TE interaction conditions, the individual treatment effects in 

the population are more impacted by school and student characteristics than in the TE main effect condi-

tions. Consequently, adjusting away bias caused by nonrandom selection is more effective in improving the 

accuracy of the estimator for PATE. The distribution of treatment effects in the population does not affect 

the order of the performance rankings among the estimators. 

 

 

DISCUSSION  

 

This study explored methodological approaches for handling multilevel selection of samples into 

randomized controlled trials for the purpose of generalizing treatment effect estimates to a target popula-

tion. The simulation study shows that when the within school sample is not randomly selected ignoring the 

within school selection process leads to bias in the estimated population average treatment effect unless 

statistical adjustment are used. Furthermore, the two estimators that involve student IPP weights (IPPSSS 
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and IPPSSM), applied in addition to the school IPP weights, significantly reduce bias compared to apply-

ing the school IPP weights alone. In addition, both estimators are robust to missing school-level covariates 

in the student selection model. The IPPSSS does not directly use school-level covariates in models, since a 

separate student selection model is estimated in each participating school. The IPPSSM protects against 

missing school-level covariates in the student selection model because the multilevel model has school-

specific intercepts and slopes. 

The simulation study also shows that small sample sizes create challenges for estimating PATE 

through retrospective adjustment, because the variance inflation of the estimate may override the reduction 

in bias. While the large school population condition (H = 2,000, school sample size ≈ 120) clearly show 

large reduction in both standardized bias and RSMSE, the small school population condition (H = 50, 

school sample size = 6) has some reduction in standardized bias, but much smaller reduction in RSMSE. In 

one particular condition, the RSMSE of the IPP-school is larger than the unadjusted RSMSE, suggesting 

that not applying any adjustment at all would actually be the best choice for this condition. The precise 

school and students level sample sizes needed for the IPP weights to effectively reduce both bias and 

RMSE is a topic for future research.         

This study has several implications for future research. The results of the simulation study showed 

that, while IPP weights always substantially decreases standardized bias, they often have less of an effect 

on the RSMSE. This shows the possible effectiveness of utilizing the stable weights developed by Zubizar-

reta (2015), which should, in theory, optimally balance the bias-variance trade-off. In the case of limited 

covariate overlap between a sample and a target population, stable weights may reduce extreme weights 

and the resultant inflation of standard errors. In addition, recent research on propensity score methods 

showed that machine learning methods outperform logistic regression models in terms of bias reduction 

and mean squared error under conditions of nonlinearity and nonadditivity (Lee, Lessler, & Stuart, 2010). 

These methods, however, have to be adapted for the multilevel setting. 

This study has several limitations. First, this study looked at a two-level selection process, but 

nonrandom within school selection can occur due to both teachers and students (i.e., a three-level selection 

process). Exploring two-level selection processes is the first step in understanding multilevel selection pro-

cesses for generalizing from experiments. Future work should expand this study to think about a three-level 

selection process with students within teachers and teachers within schools.  

Second, the methods explored in this study rely on the strongly ignorable sample selection as-

sumption, which cannot be verified empirically. Nguyen, Ebnesajjad, Cole, & Stuart (2017) did a sensitivi-

ty analysis for an unobserved school-level moderator, and future research should further investigate the 

impact of unobserved student-level moderators. For the conditions explored in our study, adding a student-

level variable that is correlated with both selection and outcomes led to substantially more bias reduction 

than using only a school-level model for adjustment. However, it is possible that there are situations not 

explored in our simulations where adjustments meant to reduce bias due to student-level observables could 

inadvertently increase bias due to unobserved confounding variable. By analogy to the literature on obser-

vational studies (see, e.g., Pearl, 2011), one can surmise that bias amplification is likely to occur when: (i) 

there is an observed covariate that strongly predicts selection in to the study but is unrelated to variation in 

treatment effects and (ii) there is an unobserved covariate that is unrelated to selection in to the study or to 

the observed covariate but is strongly related to variation in treatment effects. Future studies should explore 

situations where bias amplification might occur.  

Third, the selection and outcome models specified in the simulation study are linear and have only 

three covariates. In reality, there may be many more covariates at each level, which may include linear or 
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nonlinear predictors and multiple interactions. Correct model specification involves selection of variables, 

interactions and polynomial effects at each level. In addition, correct estimation of more complex models 

may be computationally intensive and there may be convergence issues involved when estimating the nec-

essary multilevel logistic models and weighted linear multilevel outcome models. In the case of many po-

tential confounders, interaction terms and polynomial effects, methods with automated variable selection 

can be applied (e.g., generalized boosted models).  

Fourth, all existing methods and the methods proposed condition on the estimated IPP weights. 

However, the weights themselves are random variables estimated from the data and so are estimated with 

uncertainty. Lastly, the simulation study is limited by the particular design factors that were chosen, such 

as the particular school and student population sizes and the particular distribution of treatment effects in 

the population. In particular, different results may emerge if smaller within school population sizes were 

used, and if the interaction terms in the selection/outcome models differ in sign from the main effect terms.  
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