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Psychological theories and research often incorporate and investigate how macro- and micro-level 
processes cooperate to convey, provision, and envelope effects. A historical challenge in these multi-
level contexts has been incorporating micro-macro, bottom-up, or emergent effects alongside the more 
common top-down or macro-micro effects. Although multilevel structural equation modeling provides 
a framework for such analyses, a persistent issue is the large sample size requirements necessary to re-
liably estimate parameters. In this study, we outline extensions to the recently developed Croon-based 
estimator for multilevel structural equation models. We then evaluate the performance of Croon’s ap-
proach under a method-of-moments corrected maximum likelihood estimator to probe models that in-
tegrate micro-macro and macro-micro effects. The results suggest that Croon’s method often outper-
forms maximum likelihood in terms of convergence, bias, and root mean-squared error and represents a 
useful complementary estimator. We provide R code that applies the estimator to an example using the 
lavaan package. 

Keywords: Multilevel structural equation modeling; Croon’s method; Micro-macro effects; Organiza-
tional psychology; Leadership. 
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Across a broad swath of psychological research, there has been a growing interest in incorporating 

and investigating how macro- and micro-level processes cooperate to influence outcomes. For instance, 

organizational psychology has developed a range of multilevel theories on the performance of work teams 

that integrate a leader’s ability to motivate team members (top-down or macro-micro effects) with how the 

quality of team member interaction patterns and shared mental models influences team outcomes (bottom-

up or micro-macro effects; e.g., Kozlowski, Gully, Nason, & Smith, 1999; Marks, Sabella, Burke, & Zac-

caro, 2002; Mohammed & Dumville, 2001). Recent research in this area has also identified theoretical, an-

alytical, and empirical work that bridges these types of micro and macro domains to address top-down and 

bottom-up effects. This research has also identified these lines of inquiry as one of the most important chal-

lenges in management research (e.g., Aguinis, Boyd, Pierce, & Short, 2011; Mathieu & Chen, 2011). Simi-

larly, in education, contemporary approaches to improve teacher and school effectiveness have emphasized 

the influence of individual teacher knowledge and skill on student achievement (top-down effects) while 
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concurrently leveraging collaborative models of professional development to inculcate shared educational 

goals and a school-wide culture of continuous improvement (bottom-up effects; e.g., Desimone, 2009; 

Kelcey & Phelps, 2013).  

More generally, theories across psychology often call upon complex, dynamic, and emergent pro-

cesses to describe the interaction and formation of cognitive, behavioral, and emotional outcomes (e.g., 

Hilpert & Marchand, 2018). Prior theoretical and methodological research has detailed two related but dis-

tinct types of multilevel processes (e.g., Croon & van Veldhoven, 2007; Kozlowski & Klein, 2000; 

Lachowicz, Sterba, & Preacher, 2015). The first and most well-known is the top-down or macro-micro 

processes that describe how the characteristics of organizations or macro units influence the outcomes of 

individuals (e.g., Raudenbush & Bryk, 2002). The second set of processes is the bottom-up, emergent or 

micro-macro processes that describe how the interactions among individuals emerge to influence the out-

comes of organizations (e.g., Croon & van Veldhoven, 2007).  

Despite theoretical interest in integrating top-down and bottom-up multilevel processes, the pre-

ponderance of empirical and methodological research both within and outside of psychology has fixated on 

top-down or macro-micro effects (e.g., Cronin, Weingart, & Todorova, 2011). This top-down emphasis has 

been in part driven by the inability of common methods to appropriately incorporate bottom-up, emergent 

or micro-macro effects alongside the more common top-down or macro-micro effects (Croon & van Veld-

hoven, 2007). Developments in multilevel structural equation modeling have however reduced this dispari-

ty (e.g., Lüdtke, Marsh, Robitzsch, & Trautwein, 2011). The multilevel structural equation modeling 

framework provides a flexible approach for models that integrate top-down and bottom-up processes be-

cause it facilitates the decomposition of latent variables across hierarchical levels in ways that connect and 

quantify cross-level processes (Hox, Maas, & Brinkhuis, 2010; Lachowicz et al., 2015; Lüdtke et al., 2011).  

Nevertheless, the practical utility of the multilevel structural equation modeling framework has of-

ten been tempered by model complexity and sample size considerations (e.g., Hox et al., 2010; Jak, 2019; 

Jak, Oort, & Dolan, 2014; Hox & McNeish, 2020). A key constraint in multilevel structural equation mod-

eling is that estimation of parameters typically requires fairly large sample sizes to dependably deliver sta-

ble and admissible estimates of parameters (e.g., Hox et al., 2010; Jak, 2019; Li & Beretvas, 2013; Wolf, 

Harrington, Clark, & Miller, 2013). For instance, past methodological research has suggested that 100 or 

more clusters are needed to deliver stable and admissible estimates with relatively simple multilevel struc-

tural equation models (Hox & Maas, 2001; Hox et al., 2010; Kelcey, Cox, & Dong, 2019; Li & Beretvas, 

2013; Smid & Rosseel, 2020). Investigations with even moderately complex multilevel structural equation 

models have suggested even larger samples may be required — often hundreds of clusters (Hox et al., 

2010). In a broader context, the regularity with which estimation issues arise in multilevel structural equa-

tion models has become somewhat well-known and has led to interest in, development of, and use of alter-

native estimators that are more stable for samples of less than 100 clusters (e.g., Asparouhov & Muthen, 

2007; Hox et al., 2010; Jak, 2019; Muthen, 1989, 1994; Smid & Rosseel, 2020; Takane, & Hwang, 2018; 

Yuan & Hayash, 2005).  

The large sample size requirements of multilevel structural equation modeling has at times been 

particularly challenging for many areas of psychology where routine access to hundreds of groups and in-

dividuals is prohibitively expensive or unfeasible. For instance, in the area of educational psychology, 

samples of 100 or more schools and students are uncommon (e.g., Spybrook, Shi, & Kelcey, 2016). More-

over, across most areas inside and outside of psychology, there has been a growing mandate for empirical 

studies to establish evidence regarding the theories of action and effects of context. For instance, increas-

ingly studies are charged with sourcing more comprehensive evidence that probes for whom and under 
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what contexts effects manifest (e.g., Dong, Kelcey, & Spybrook, 2018; Moss, Kelcey, & Showers, 2014) 

while also detailing the intermediate processes and contexts that convey, provision, and envelope effects 

(e.g., Ilgen, Hollenbeck, Johnson, & Jundt, 2005; Kelcey, Dong, Spybrook, & Cox, 2017; Kelcey, Dong, 

Spybrook, & Shen, 2017).  

For many studies, the sample sizes demanded by the complexity of macro- and micro-level pro-

cesses implied by theories quickly overtakes the range of plausible sample sizes commonly found in many 

fields (e.g., Gagne & Hancock, 2006; Hox et al., 2010; Hox, Moerbeek, & van der Schoot, 2017). Further-

more, estimation with complex multilevel models can often be further complicated by the (im)balance of 

individual-level samples across groups (e.g., Guittet, Ravaud, & Giraudeau, 2006). Prior research has con-

sistently demonstrated that parameter estimation can be particularly difficult when the number of individu-

als per team or cluster varies across clusters (e.g., Hox & Maas, 2001; Muthen, 1994; Raudenbush & Bryk, 

2002). This research has found that the impact of unbalanced samples on estimation can be particularly 

large when the number of teams is small to moderate (e.g., Guittet et al., 2006). The net implication is that 

many small to moderate sample multilevel analyses encounter estimation issues and errors that force re-

searchers to either test a simplified version of the guiding theory of action or rely on estimators or ap-

proaches that have with less desirable properties (Hox et al, 2010; Hox & McNeish, 2020; Kelcey, Cox, & 

Dong, 2019; Loncke, et al., 2018; Smid & Rosseel, 2020).  

The ostensible way to circumvent such issues is to simply collect more data. In many areas of ex-

ploratory and experimental psychology, however, the development of theories to address multifarious lines 

of questions combined with calls for explanatory models has given rise to structural equation models 

whose complexity often outpaces sample size (e.g., Christ, Sibley, & Wagner, 2012; Hill, 2006; Hox et al., 

2010). The imbalance between model complexity and available sample size can be particularly pronounced 

in multilevel settings where practical sampling constraints suggest that samples of 100 or more clusters 

(e.g., teams, corporations, schools) are often considered prohibitively large while statistical standards for 

multilevel structural equation modeling often suggest that samples of 100 clusters is only small to moderate 

in scale when it comes to parameter estimation (e.g., Hox et al, 2010; Schochet, 2011; Spybrook et al., 

2016). Prior research has, however, asserted the foundational and theoretical value of investigating macro- 

and micro-level processes in small to moderate sized studies (e.g., Bodner & Bliese, 2017; Walton, 2014). 

To address the disparity between model complexity and study scale that often arises in single and 

multilevel structural equation models, literature over the past several decades has developed a range of al-

ternative estimators (e.g., Asparouhov & Muthen, 2007; Croon & van Veldhoven, 2007; Depaoli & Clif-

ton, 2015; Hox et al, 2010; Jak, 2019; Muthen, 1989; 1994; Kelcey, Hill, & Chin, 2019; Takane & Hwang, 

2018; Yuan & Hayash, 2005). Recent work along these lines has developed a new limited information es-

timator that introduces a bias-correction factor to overcome the shortcomings of many of the previous es-

timators (Croon & van Veldhoven, 2007; Devlieger, Mayer, & Rosseel, 2016; Devlieger & Rosseel, 2017; 

Kelcey, Cox, & Dong, 2019; Rosseel, 2020). This Croon-based estimator was designed to provide more 

stability in estimation while retaining minimal bias in small samples. The estimator draws on a form of bi-

as-corrected factor score path analysis whose corrections were outlined in Croon (2002). Conceptually, the 

estimator exploits the simplicity and inherent stability of estimating a collection of smaller and simpler lo-

cal measurement models, then amasses the results of the models, and finally corrects for the expected bias-

es that arises from the piecewise approach. 

There is a growing research base that has demonstrated the potential of Croon’s estimation method 

across a variety of settings and model types (e.g., Devlieger et al., 2016; Devlieger & Rosseel, 2017; Hayes 

& Usami, 2019; Kelcey, 2019; Kelcey, Cox, & Dong, 2019; Loncke et al., 2018; Lu, Kwan, Thomas & 
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Cedzynski, 2011; Smid & Rosseel, 2020). For example, Croon-based estimation has demonstrated robust 

performances in standard single level structural equation models, structural equation models with cross-

loadings in the measurement models, structural equation models with measurement and structural misspec-

ifications, structural equation models with non-normal error distributions, and multilevel structural equa-

tion models (Devlieger et al., 2016; Devlieger & Rosseel, 2017; Hayes & Usami, 2019; Kelcey, 2019; 

Loncke et al., 2018; Lu et al., 2011).  

In this study, we extended the scope of this work by investigating the corrections and performance 

of Croon’s bias-corrected estimator in the context of multilevel structural equation models that integrate 

bottom-up and top-down effects. Below, we first develop a context and working example. We then de-

scribe the Croon-based estimation process and corrections for multilevel structural equation models that 

integrate bottom-up and top-down effects. We follow with an illustration of the method by applying it to 

our working example and provide R code to implement the analyses using the lavaan package (Rosseel, 

2012). We then probe the performance of Croon’s method relative to maximum likelihood estimation and 

(uncorrected) factor score path analysis using a Monte Carlo simulation. We end with a discussion. 

 

 

CROON-BASED ESTIMATION 

 

Working Example 

 

We detail the Croon-based estimator within the context of an example study from the organiza-

tional psychology literature. Our example takes up an investigation regarding how team leaders’ behaviors 

and their team members’ perceptions of those behaviors support organizational change through an interplay 

of bottom-up and top-down effects (Nohe, Michaelis, Menges, Zhang, & Sonntag, 2013). A broad array of 

organizational studies has sought to identify and delineate the pivotal behaviors of effective leaders and the 

pathways through which these behaviors act on team performance outcomes (e.g., Walter & Bruch, 2009). 

One set of behaviors prominently highlighted in the literature is the charisma of leaders or the ability of lead-

ers to project “symbolic leader influence rooted in emotional and ideological foundations” (Antonakis, Fen-

ley, & Liechti, 2011, p. 376).  

Prior research has consistently implicated charismatic behavior by leaders as an important attrib-

ute in cultivating organizational change and eventually higher team performance (e.g., DeGroot, Kiker, & 

Cross, 2000; Wu, Tsui, & Kinicki, 2010). However, much less is known regarding how leaders’ charisma 

actually comes to improve team performance (Nohe et al., 2013). For these reasons, recent research has de-

veloped organizational change theories that interweave top-down and bottom-up processes to empirically 

delineate how effects are conveyed. One recent example of this line of inquiry is the theory presented and 

evaluated in Nohe et al. (2013). The guiding theory suggests that leaders’ charisma shapes members’ per-

ceptions of their leadership (i.e., top-down effects) in ways that bolster team members’ commitment to 

change (lateral effects) and ultimately improve team performance (bottom-up effects).  

The theory of action that we examined in our illustrative example focuses on the system of rela-

tionships among the four core latent constructs depicted in Figure 1. This system employs latent variables 

that characterize both team- and individual-level constructs while drawing on a series of top-down and bot-

tom-up processes. The first construct in our system focused on leader’s change-promoting behaviors 

(CPB). A Leader’s change-promoting behavior was the primary independent variable and was assessed at 

the team-level using the degree to which leaders engaged in six change-promoting behaviors (Herold, Fe-
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dor, Caldwell, & Liu, 2008). The second construct in this example system focused on individual team 

member’s perceptions of leader charisma (PLC). Team member’s perceptions of leader charisma served as 

the proximal or first mediator in the theory and the latent variable was measured using three questions re-

garding leader’s idealized influence (e.g., Felfe, 2006). The third construct we draw on captured individual 

team member’s commitment to change (CTC). Team member’s commitment to change operated as the dis-

tal or second mediator in the system and was evaluated using four questions regarding the degree to which 

they were committed to change (e.g., Herscovitch & Meyer, 2002). The final construct in our example sys-

tem assessed the team-level performance from leaders’ perspectives (TP). Team-level performance from 

leaders’ perspectives served as the targeted outcome and was evaluated using four questions (e.g., Conger, 

Kanungo, & Menon, 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1 

Multilevel diagram of the theory and structural paths of the working example connecting leader’s 

change-promoting behaviors (CPB), individual team member’s perceptions of leader charisma (PLC),  

individual team member’s commitment to change (CTC), and team-level performance from leaders’  

perspectives (TP) together with the observed indicators for each construct. 

 

 

Figure 1 provides a multilevel diagram of the theory and outlines the structural paths connecting 

the constructs together with the observed indicators for each construct. More abstractly, Figure 1 illustrates 

a case of sequential multilevel mediation that is characterized by team- and individual-level constructs that 

integrates top-down and bottom-up processes. The theory describes how a team-level variable (leader’s 

change-promoting behaviors) influences an individual-level proximal mediator — team member’s percep-

tions of leader charisma (top-down effect) — in ways that convey influence on an individual-level distal 

mediator — team member’s commitment to change (lateral effect) — and ultimately manifest as improve-

ments in a team-level outcome — team-level performance from leaders’ perspectives (bottom-up effect). 
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Croon Estimation 

 

We next delineate the theory of action described in Figure 1 as a multilevel structural equation 

model. Conceptually, a multilevel framework begins by decomposing the variation in the indicators used in 

Figure 1 (i.e., the collection of indicators labeled b, p, c, and t in Figure 1) into orthogonal components that 

represent variation across teams and variation across individuals within teams (e.g., Muthen, 1989; 1994). 

With y as the collection of indicators, the decomposition can be expressed as:  
2 1 2 2

1 1

~ (0, )

~ (0, )

L L L L

L L

MVN

MVN

= + y

y

y y y y

y





 

  
(1) 

Here yL2 represents the team-level means of the indicators whereas yL1 captures the individual-

specific deviations of an individual from his/her team mean. Under this decomposition, the covariances 

among the team-level indicator means is described using 𝚺𝐲
𝐿2 whereas the covariance among the individual 

deviations from the indicator means within teams (individual-level) are described using 𝚺𝐲
𝐿1. 

For instance, applied to the team member’s perceptions of leader charisma (PLC) construct in our 

working example, we can decompose the variation in each of the indicators such that pL2 captures the ex-

tent to which leaders differ along their team members’ collective perceptions of their charisma whereas pL1 

captures the differences between each individual’s perception and the average perception of the leader 

across fellow team members. In turn, 𝚺𝐩
𝐿2describes how the average reported perceptions for each charisma 

indicator covary with the average reported perceptions of the other charisma indicators. Likewise, 𝚺𝐩
𝐿1de-

scribes how an individual’s deviations in reported charisma for an indicator covary with that individual’s 

deviations on other charisma indicators. 

Once the variation in the indicators is split across levels, we can then develop measurement mod-

els that relate the indicators to their respective factors and structural models that relate the factors as speci-

fied in a substantive theory (e.g., see Figure 1). At the individual-level the measurement and structural 

models can be specified as: 

yL1 = ɅL1 ηL1 + ζL1 

        ηL1 = BL1 ηL1 + εL1    (2) 

We use ηL1 as the individual-level latent variables (e.g., 𝜂𝑃𝐿𝐶
𝐿1  and 𝜂𝐶𝑇𝐶

𝐿1  in Figure 1), ɅL1 as the in-

dividual-level factor loading patterns of the indicators and ζL1 as the individual-level residual errors of the 

indicators. For the structural models, we use BL1 as individual-level path coefficients connecting the latent 

variables and ɛL1 as the individual-level regression residual errors. In Figure 1, for example, the BL1 set of 

path coefficients consists of d1 that captures an individual-level relationship that connects individual team 

member’s perceptions of leader charisma (PLC) with individual team member’s commitment to change (CTC). 

Similarly, at the team-level, the measurement and structural models can be specified as 

yL2 = ɅL2 ηL2 + ζL2 

        ηL2 = BL2 ηL2 + εL2    (3) 

We use ηL2 as the team-level latent variables (e.g., 𝜼𝑪𝑷𝑩, 𝜼𝑷𝑳𝑪
𝑳𝟐 , 𝜼𝑪𝑻𝑪

𝑳𝟐 , and 𝜼𝑻𝑷in Figure 1), ɅL2 as 

the team-level indicator factor loadings and ζL2 as the team-level residual errors of the indicators. Structural 

models then employ BL2 as the team-level path coefficients connecting the latent variables (e.g., coeffi-

cients a1, a2, b1, b2, c’, and d2 in Figure 1) and εL2 as the residual errors. 

Under this multilevel structural equation modeling framework, we can implement Croon-based es-

timation of the top-down and bottom-up parameters with (method-of-moments corrected) maximum likeli-

hood using four conceptual steps. The first step is to individually estimate each of the common factor mod-
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els implied by Figure 1. Our implementation and subsequent analyses focus on Croon’s corrections under 

maximum likelihood. We note, however, Croon’s approach and corrections are not specific to maximum 

likelihood and its method-of-moments based corrections can be adapted for other estimators (e.g., 

Devlieger & Rosseel, 2019; Rosseel, 2020). We draw on maximum likelihood estimation for single-level 

confirmatory factor analysis models for latent variables that are evaluated using team-level indicators (i.e., 

CPB and TP) and multilevel confirmatory factor analysis models for latent variables that draw on individu-

al-level indicators (i.e., PLC and CTC).  

The second step leverages the factor models to predict factor scores (e.g., using the regression 

method) and the resulting variances and covariances of the latent variables. Our implementation draws on 

the regression method for factor score prediction. However, the method can be readily implemented with 

alternative factor score prediction methods as well (e.g., Devlieger et al., 2016; Kelcey, Cox, & Dong, 

2019). More generally, implementation of Croon’s approach does not actually require factor score predic-

tion (Devlieger & Rosseel, 2019). Croon’s method can fully circumvent the use of factor scores by drawing 

on the implied covariances of indicators across latent variables. The use of factor scores is only a concep-

tually convenient and accessible way to describe the logic of the method. 

When theories incorporate both top-down and bottom-up relationships, we need to predict factor 

scores at each level and form variance-covariance matrices at the team- and individual-level. For instance, 

in our application, the team-level variance-covariance matrix captures the team-level variance and covari-

ance components among all four latent variables whereas the individual-level variance-covariance matrix 

captures the individual-level variance and covariance components between the PLC and CTC latent varia-

bles only. 

In the third step, we correct the factor score variance-covariance matrices using the results of the 

factor models from step one. More specifically, the use of predicted factor scores to estimate the variance 

and covariances among latent variables neglects score uncertainty and results in biased estimates. As a re-

sult, we must leverage the parameter estimates stemming from the measurement models in step one (Equa-

tions 2 and 3) to infer the expected bias of the covariances introduced by predicting factor scores. In the 

context of multilevel models involving top-down and bottom-up relationships, the corrected covariance 

terms in the team-level covariance matrix (𝚺𝛈
𝐿2) can be estimated using: 

2 2 1 2 2( ) ( )L L L L T

f

− −= R R
                    (4) 

Here we use 𝚺𝑓𝛈
𝐿2 as the team-level covariance matrix of the latent variable factor scores and 𝐑𝛈

𝐿2 as 

a type of factor-specific reliability-based correction matrix. The diagonal elements of the 𝐑𝛈
𝐿2 correction 

matrix are functions of the respective team-level factor score (AL2), loading (ɅL2), and indicator reliability 

(Ωη) matrices such that 

 

1 1 1

2 2 2

2 2

2 2

2

2 2

0 0

0 0

0 0
K K K

L L

L L

L

L L

  

  

  

 
 
 =
 
 
  

A

A
R

A



 

 

 

   (5) 

 

The factor score (AL2) and loading (ɅL2) matrices result directly from the estimation of the factor 

models. More practically, the product of the factor score and loading matrices for a particular factor (e.g., 

𝑨𝜂1
𝐿2𝜦𝜂1

𝐿2for the first factor) produces a type of measurement model-based estimate of the reliability of the 
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factor scores. In turn, multiplying the covariance between factor scores by the inverse of the reliabilities of 

the respective factor scores produces a type of disattenuated estimate of the true covariance.  

The final term in the correction matrix represents the multivariate indicator reliability matrices 

(Ωη) for the team-level random intercepts of the indicator means. A multivariate indicator reliability matrix 

for a specific factor (e.g., η1) can be obtained as 

1 1 1 1

1

1( / )n −

   = +T T V     (6) 

where T is the team- and V is the individual-level covariance matrix of the indicators and n1 is the 

number of individuals per team. Like the previous correction terms (i.e., AL2 ɅL2), the multivariate indicator 

reliability matrices (e.g., Ωη1, Ωη2, …) introduce further adjustments for the unreliabilities of the predicted 

indicator means. When indicators are assessed using team-level indicators for a specific construct (e.g., 

CPB in Figure 1), the multivariate reliability matrix corresponding to that factor (e.g., ΩηCPB) reduces to an 

identity matrix.  

In unbalanced samples where the number of individuals per team is not constant, we can replace 

the n1 term in Equation 6 with the harmonic mean (𝑛̃1) such that the multivariate indicator reliability ma-

trix for the first factor, for example, becomes  

         
1 1 1 1

1

1( / )n −

   = +T T V    

 (7) 

Having corrected the covariance terms the team-level covariance matrix, we can next correct the 

variance terms of the team-level covariance matrix (diagonal components of (𝚺𝛈
𝐿2)). These terms can be es-

timated in a similar manner using 
2 2 1 2( ) ( ) ( )L L L

fdiag diag−= R
      (8) 

Corrections to the variance terms adjust the variance of the observed factor scores to the model-

based estimate of the factor variance or the variance assigned if identifying the scale of the latent variable 

by fixing the variance (e.g., to unit variance) and freeing all loadings.  

In a similar manner, we can also apply Croon-based corrections for the individual-level covariance 

matrix (𝚺𝛈
𝐿1). A bias-corrected individual-level covariance matrix can be estimated as 

 

1 1 1 1 1( ) ( )L L L L T

f

− −= R R
                       (9) 

Here, we use 𝚺𝑓𝛈
𝐿1 as the individual-level covariance matrix of the latent variable factor scores and 

𝐑𝜂
𝐿1 as a correction matrix. Similar to the corrections for the team-level, the correction matrix draws on the 

respective individual-level factor score (𝐀𝜂1
𝐿1 ) and loading (𝚲𝜂1

𝐿1 ) matrices such that 

               

1 1

2 2

1 1

1 1

1

1 1

0 0

0 0

0 0
K K

L L

L L

L

L L

 

 

 

 
 
 =
 
 
  

A

A
R

A









 

  
(10) 

In contrast to the team-level corrections, however, the individual-level corrections do not need to 

additionally incorporate the reliabilities of the indicator means. The variance terms of the individual-level 

covariance matrix (diagonal terms of 𝚺𝛈
𝐿1) can be also estimated using 

 

1 1 1 1( ) ( ) ( )L L L

fdiag diag−= R
                   (11) 

To conceptually summarize, the third step of the Croon method is the crucial correction step of the 

approach. The initial estimates of the relationships among the latent variables gleaned from the predicted 
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factor-score variance-covariance matrices are biased due to the score uncertainty. For instance, in our 

working example, the factor score predictions for the leader and team member latent traits under considera-

tion (CPB, PLC, CTC, and TP) contain uncertainty or measurement error. Ignoring this error leads to bi-

ased estimates of the relationships among the latent variables. However, by using the results of the meas-

urement models (e.g., the factor score matrices, the loading matrices, and the estimated unreliabilities of 

the factors) as described above, it is possible to account for this uncertainty and reduce bias in the estimat-

ed variance-covariance matrix. 

In the final step, we use the bias-corrected covariance matrices for each level as sample covariance 

matrices and estimate the structural path coefficients using the typical sample-based path analysis. For in-

stance, using the corrected team-level covariance matrix (𝚺𝛈
𝐿2), we can estimate the team-level structural 

coefficient parameters using the path model depicted in Figure (1). 
 

η
𝑇𝑃

= β
0
𝑇𝑃 + 𝑏2η

𝐶𝑇𝐶
𝐿2 + 𝑏1η

𝑃𝐿𝐶
𝐿2 + 𝑐′η

𝐶𝑃𝐵
+ ε𝑇𝑃

𝐿2  

η
𝐶𝑇𝐶
𝐿2 = β

0
𝐶𝑇𝐶 + 𝑑2η

𝑃𝐿𝐶
𝐿2 + 𝑎2η

𝐶𝑃𝐵
+ ε𝐶𝑇𝐶

𝐿2  

η
𝑃𝐿𝐶
𝐿2 = β

0
𝑃𝐿𝐶 + 𝑎1η

𝐶𝑃𝐵
+ ε𝑃𝐿𝐶

𝐿2    (12) 

 

In this set of equations, we include each of the structural coefficients represented in Figure 1 at the 

second level (i.e., a1, a2, b1, b2, c’, and d2). Likewise, using the corrected individual-level covariance matrix 

( 𝚺𝛈
𝐿1), we can estimate the individual-level structural coefficient parameter (d1) using the path model  

 

1 1 1

0 1

L CTC L L

CTC PLC CTCd =  +  +                  (13) 

In terms of our working example, we estimated the relationships between leader’s change-

promoting behaviors (CPB), individual team member’s perceptions of leader charisma (PLC), individual 

team member’s commitment to change (CTC), and team-level performance from leaders’ perspectives (TP) 

using corrected covariance matrices that properly reflected the uncertainty in each latent variable by utiliz-

ing estimates from their respective measurement models. 

 

 

Illustration 

 

We next consider an example analysis that outlines the implementation of the Croon-based esti-

mator for models that integrate top-down and bottom-up effects. Our analyses probe the relationships de-

picted in Figure 1 and draw on a simulated sample of 33 teams each with 5 team members that were gener-

ated on the basis of the correlation matrix provided by Nohe et al. (2013). Code implementing the analyses 

in R using the bcfspa() function is outlined below and the code generating the data and an algorithm im-

plementing Croon’s method using the lavaan package is available in supplemental materials (Rosseel, 2012). 

Alternative implementations using the functions directly in lavaan package should be available soon. 

After downloading the source code for the bcfspa() function, we can first specify the structure of 

the model using lavaan syntax as 
semodel<- ' 

 level: 1 

 fpcL1 =~ pc1+pc2+pc3 

 fctcL1 =~ ctc1+ctc2+ctc3+ctc4 

 fctcL1 ~ fpcL1 

 

 

 level: 2 

 fcpbL2 =~ cpb1+cpb2+cpb3+cpb4+cpb5+cpb6 
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 fpcL2 =~ pc1+pc2+pc3 

 fctcL2 =~ ctc1+ctc2+ctc3+ctc4 

 ftpL2 =~ tp1+tp2+tp3+tp4 

 ftpL2 ~ fctcL2+fpcL2+fcpbL2 

 fctcL2 ~ fpcL2+fcpbL2 

 fpcL2 ~ fcpbL2 

 ' 

sem1<-sem(semodel, data=d, cluster="id2") 

 

summary(sem1) 

The syntax expresses the individual- and team-level reflective common factor models for the la-

tent variables using the ‘=~’ operator. Subsequently, the syntax specifies the regression relationships using 

the ‘~’ operator.  

Once we have specified the form of the measurement and structural models, we can estimate the 

parameters using the Croon-based method. Using the bcfspa() function, we can estimate the parameters of 

the model using 

croon1<-bcfspa(semodel, data=d, cluster="id2",univariate=FALSE) 

In this syntax, the first argument we specify represents the syntactical representation of the model, 

the second represents the data (i.e., dataframe), the third represents the cluster or team identifying code, 

and the fourth represents the method with which we predict indicator means. When the univariate ar-

gument is true, the function draws on a simpler univariate estimation approach for the indicator reliabilities 

and when it is false the function draws on multivariate estimates of the indicator reliabilities (see Equation 

6 and Kelcey, Cox, & Dong, 2019).  

For purposes of comparison, we also estimate the parameters using maximum likelihood and un-

corrected factor score path analysis. Maximum likelihood estimates the parameters of each measurement 

and structural model concurrently. As previously outlined, this approach has shown to yield reduced con-

vergence rates and biased coefficients with small multilevel sample sizes but it represents the predominant 

approach in practice. It can be implemented using the lavaan package as  

sem1<-sem(semodel, data=d, cluster="id2") 

As a final comparison, we considered uncorrected factor score path analysis. This approach is a 

common alternative to maximum likelihood in small sample settings because it tends to be more robust in 

terms of convergence. The approach is similar to that of Croon’s method but draws on the uncorrected co-

variances among factors to estimate structural relationships. As a result, uncorrected factor score path anal-

ysis is known to return biased structural parameter estimates because it neglects the uncertainty of the fac-

tor scores. We can implement the approach using the bcfspa() approach as 

croon_fs<- bcfspa(semodel, data = d, cluster = "id2",  

                                                                    univariate=FALSE, uncorrected.cov = TRUE) 

The syntax specifying the uncorrected factor score path analysis approach follows that of the 

Croon-based approach. However, the final uncorrected.cov argument allows users to request estimates that 

avoid the aforementioned Croon-based corrections and so that estimates reduce to the conventional uncor-

rected factor score path analysis approach. 

The comparative results of our illustrative analyses are summarized in Table 1 by path coefficient 

and estimator. Overall, there is a pattern of nontrivial bias in the parameter estimates for each estimator. 

Across coefficients, however, the Croon-based estimator returned estimates with the smallest average abso-

lute bias. More specifically, the average absolute bias across coefficients was 0.12 for Croon’s method but 

nearly doubles for the uncorrected factor score path analysis (0.21), and nearly triples for maximum likeli-

hood (0.34). Although these data were purposively chosen to illustrate the potential differences among the 
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estimators, prior research has consistently found that the nature and direction of these discrepancies are in-

dicative of the typical performance of these estimators in small samples (e.g., Kelcey, Cox, & Dong, 2019). 

Using a simulation, we further probe the findings of past research by examining the extent to which the 

discrepancies observed in our example analysis among estimators persist across similar and larger samples 

and a range of conditions for structural equation models that integrate bottom-up and top-down effects. 

 

TABLE 1 

Team-level structural model results 

 

Coefficient True FS ML Croon 

a1 0.24 0.74 ‒0.02 0.16 

a2 0.18 ‒0.06 0.37 0.00 

c' 0.22 0.18 0.19 0.23 

d2 0.26 ‒0.02 ‒0.97 0.00 

b1 0.10 0.00 0.36 0.00 

b2 0.16 0.06 0.10 0.08 

Average Abs Bias -- 0.21 0.34 0.12 

Note. ML is concurrent estimation of all parameters using maximum likelihood; FS is uncorrected fac-
tor score path analysis; Croon is Croon’s bias-corrected method  

 

 

SIMULATION 

 

As previously noted, prior research has suggested that Croon-based estimation in small sample 

single and multilevel settings often outperforms concurrent maximum likelihood and uncorrected factor 

score path analysis in terms of convergence, bias, and variance (e.g., Devlieger & Rosseel, 2017; Hayes & 

Usami, 2019; Kelcey, 2019; Kelcey, Cox, & Dong, 2019). However, these simulations have been largely 

focused on single-level models and multilevel models that draw solely on lateral and top-down models. 

Past research has generally excluded the consideration of bottom-up effects and multilevel theories of ac-

tion that incorporate and integrate bottom-up with lateral and top-down effects. For this reason, we extend 

prior investigations of the Croon-based estimator by probing its performance in multilevel structural equa-

tion models that integrate top-down and bottom-up effects relative to the performances of (uncorrected) 

factor score path analysis and (concurrent) maximum likelihood. 

 

 

Facets 

 

Using the multilevel structural equation model depicted in Figure 1 and the correlations reported 

in Nohe et al. (2013) as the base generating model, we varied six facets in our simulations. The first and 

second facets were the team-level sample size (n2) and the individual-level sample size (n1). Past research 

has widely found that sample size was a seminal factor in the absolute and relative performance of the es-

timators (e.g., Croon & van Veldhoven, 2007; Devlieger & Rosseel, 2017). Differences among the estima-

tors have been most pronounced at small to moderate team-level sample sizes but also when the number of 

individuals per team is small to moderate (e.g., Croon & van Veldhoven, 2007; Kelcey, Cox, & Dong, 

2019). Although what constitutes small and moderate sample sizes can be judged relative to a particular 

field, the complexity of even simple multilevel structural equation models would suggest that samples of 
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less than 100 teams and less than 50 individuals per team falls within that range (e.g., Croon & van Veld-

hoven, 2007). Prior studies have often considered team-level sample sizes on the order of 50 to 100 and 

individual-level sample sizes of 10 to 50 per team (e.g., Croon & van Veldhoven, 2007; Li & Beretvas, 

2013; Hox et al., 2010). In this study, we extend the range by also considering small team-level sample siz-

es — such as those found in the literature (e.g., Nohe et al., 2013). Team-level sample size ranged from the 

original sample size of 33 — used in the Nohe et al. (2013) study and in our example analysis above — to 

three times that size (99 teams). Likewise, our analyses considered individual-level sample sizes that were 

particularly small to moderate by the standard of previous simulations but potentially consonant with that 

of practice (e.g., Hox & Maas, 2001; Nohe et al., 2013). Individual-level sample sizes spanned from the 

original sample size in Nohe et al. (2013) of about 5 to three times that size (15 individuals per team).  

The third facet we considered was the variation in the factor loadings for each factor. Simulations 

into the performance of Croon-based, uncorrected factor score path analysis, and maximum likelihood es-

timation have demonstrated that under some conditions the absolute and relative performance of these es-

timators is influenced by such loadings (e.g., Devlieger & Rosseel, 2017; Kelcey, 2019; Wolf, Harrington, 

Clark & Miller, 2013). We considered two types of specifications. In the first specification, factors were 

generated by constraining all indicator loadings to be equal to one (at both the team- and individual-levels). 

In the second specification, the indicator loadings varied between 0.5 and 1.5.  

The fourth facet we probed was cross-level metric (non-)invariance. In multilevel models, multi-

level indicators may reflect constructs conceptualized at different levels to varying degrees (e.g., Jak, 2019; 

Kim, Yoon, Wen, Luo, & Kwok, 2015). When model complexity is high relative to the sample size, a 

common approach is to reduce the number of parameters in the model by constraining the loadings of an 

indicator to be equal across levels (e.g., Depaoli & Clifton, 2015; Gonzalez-Roma & Hernandez, 2017; 

Kelcey, McGinn, & Hill, 2014). Prior research has suggested that under some conditions such cross-level 

invariance constraints can actually improve convergence without appreciably introducing bias (Kim & 

Cao, 2015). Such constraints may be particularly relevant for models that include top-down and bottom-up 

effects because measurement properties, scales, and relationships within teams may be different than those 

across teams. In our simulation, we examined the performance of the estimators in settings where cross-

level metric invariance was and was not maintained. For invariant conditions, the loadings for a single in-

dicator were held equal across levels (but different across indicators) and took values ranging from 0.5 or 

1.5. For non-invariant conditions, the loadings for a single indicator opposed each other across levels tak-

ing a value of 0.5 at one level and 1.5 at the other level.  

Similarly, the fifth facet expanded invariance considerations by examining the impact of different 

indicator error variance magnitudes across levels. Such modulations help to additionally probe the perfor-

mance of the estimators relative to the level-specific reliability of the factors. In the invariant case, the in-

dicator error variances at both levels were held to be equal and set to a value of one or two. In our non-

invariant case, the indicator error variances opposed each other across levels such that one level was set to 

one and the other level was set to two (see Table 2 for details).  

The final facet we varied was the consistency of the individual-level sample size across clusters. A 

historical challenge in multilevel settings has been combining varying degrees of information provided by 

clusters due to unbalanced samples of individuals (e.g., Guittet et al., 2006; Hox & Maas, 2001; Hox et al., 

2010; Muthen, 1994; Raudenbush & Bryk, 2002). Prior research has found that unbalanced cluster sizes 

can have a broad range of detrimental effects on the estimation of parameters in multilevel models and 

multilevel structural equation models (e.g., Hox et al., 2010; Muthen, 1994; Yuan & Hayash, 2005).   
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TABLE 2 

Simulation results for balanced samples 

 

Sample Invariance Convergence Bias RMSE 

n2 n1 
i j= 

 

2 1L L=   
1L  

2L  FS Croon ML FS Croon ML FS Croon ML 

33 5 equal yes 1 1 .97 .96 .88 0.03 0.02 0.03 0.24 0.31 0.51 

45 5 equal yes 1 1 .99 .99 .95 0.04 0.01 0.01 0.21 0.27 0.37 

66 10 equal yes 1 1 1.00 1.00 1.00 0.04 0.01 0.01 0.15 0.19 0.21 

99 15 equal yes 1 1 1.00 1.00 1.00 0.04 0.00 0.00 0.12 0.14 0.15 

33 5 equal yes 2 2 .71 .70 .55 0.05 0.01 0.03 0.58 0.54 0.84 

45 5 equal yes 2 2 .87 .86 .75 0.05 0.01 0.03 0.29 0.37 0.56 

66 10 equal yes 2 2 .97 .97 .92 0.06 0.00 0.02 0.19 0.27 0.38 

99 15 equal yes 2 2 .99 .99 .98 0.06 0.01 0.01 0.14 0.19 0.23 

33 5 mixed yes 2 2 .63 .62 .46 0.06 0.03 0.06 0.41 0.49 0.80 

45 5 mixed yes 2 2 .73 .72 .63 0.05 0.02 0.04 0.30 0.34 0.66 

66 10 mixed yes 2 2 .89 .89 .86 0.06 0.01 0.04 0.22 0.23 0.60 

99 15 mixed yes 2 2 .95 .95 .95 0.06 0.01 0.01 0.15 0.18 0.21 

33 5 mixed no 1 2 .67 .66 .62 0.05 0.02 0.03 0.55 0.57 0.75 

45 5 mixed no 1 2 .78 .77 .73 0.04 0.02 0.03 0.24 0.27 0.41 

66 10 mixed no 1 2 .89 .89 .89 0.04 0.01 0.01 0.17 0.20 0.29 

99 15 mixed no 1 2 .96 .96 .96 0.04 0.01 0.01 0.13 0.15 0.16 

   
Average Across Conditions .87 .87 .82 0.05 0.01 0.02 0.26 0.30 0.46 

Note. Ʌi = Ʌj
 indicate factor loadings are held equal across indicators whereas ɅL2 = ɅL1 indicates that factor loadings are held equal across levels; ζL1 and ζL2 indicate the 

magnitude of the individual- and team-level error variances for the indicators; ML is concurrent estimation of all parameters using maximum likelihood; FS is uncorrect-
ed factor score path analysis; Croon is Croon’s bias-corrected method; RMSE indicates the root mean-squared error. 
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Despite the documented challenges of unbalanced cluster sizes for a variety of estimators, prior 

research has not examined the implications of such imbalances on the absolute and relative performance 

Croon-based estimation. For this reason, we examined the sensitivity of the estimators to different individ-

ual sample sizes for each team. We considered two such conditions that we label balanced and unbalanced. 

In the balanced case, the number of individuals in each team was constant across teams. In the unbalanced 

case, we randomly omitted 50% of the individual-level sample size for half of the teams while the remain-

ing teams retained the full individual-level sample size specified in the condition (see Table 3).   

 

 

Results 

 

To evaluate the absolute and relative performance of the estimators, we drew on 1,000 simulated 

samples in each condition. We summarized the results of the simulation in terms of three criteria: the rate 

of convergence, bias, and root mean-squared error. Previous investigations have consistently indicated 

more reliable convergence was a primary advantage of Croon-based estimators when compared to that of 

maximum likelihood (e.g., Devlieger & Rosseel, 2017). As a result, we evaluated convergence using the 

proportion of simulated samples for which the estimator converged to a maximum and did not encounter 

estimation errors (e.g., non-positive definite covariance matrix).  

Similarly, prior work has demonstrated that a second core advantage of Croon-based estimation is 

reduced bias relative to uncorrected factor score path analysis and maximum likelihood in small to moder-

ate samples (e.g., Kelcey, Cox, & Dong, 2019). Bias was evaluated using the average absolute bias of the 

team-level structural path coefficients 

2 2

1

|

AverageAbsoluteBias

P
L L

p p

p

B B

P

=

−

=

|

 

  (14)
 

with 𝐵̄𝑝
𝐿2 as the average parameter value across all simulated draws for which the estimator con-

verged, 𝐵𝑝
𝐿2 as true parameter value, and P as the number of team-level path coefficients.  

Like the convergence and bias properties, prior research has also suggested that with small to 

moderate samples, Croon-based estimators are typically less dispersed when compared to their maximum 

likelihood counterpart but slightly more dispersed than that of uncorrected factor score path analysis 

(Kelcey, 2019; Kelcey, Cox, & Dong, 2019). That is, the bias reduction associated with the Croon-based 

corrections is typically bought with an increase in estimator variance relative to the uncorrected factor 

score path analysis method. To assess this bias-variance tradeoff, we employed the root mean-squared error 

of the estimators in order to jointly summarize bias-variance tradeoff considerations (e.g., Lüdtke et al., 

2011). Root mean-squared error was evaluated using the average root mean-squared error of the team-level 

structural path coefficients 

2 2 2

1 1

ˆ( )

Root mean-squarederror

P I
L L

pi p

p i

B B

PI

= =

−

=


    (15) 

 

with 𝐵̂𝑝𝑖
𝐿2 as the parameter estimate for parameter p in draw i and I as the number of draws. 

The results of our simulation are summarized in Tables 2 and 3. Table 2 outlines the performance 

of the estimators for balanced samples whereas Table 3 outlines the results for unbalanced samples. 
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TABLE 3 

Simulation results for unbalanced samples 

 

Sample Invariance Convergence Bias RMSE 

n2 n1 i j=   
2 1L L=   

1L  
2L  FS Croon ML FS Croon ML FS Croon ML 

33 5 equal yes 2 2 .06 .01 .01 0.48 0.37 0.56 6.46 1.47 3.30 

45 5 equal yes 2 2 .07 .01 .01 0.28 0.13 0.46 2.90 0.78 4.27 

66 10 equal yes 2 2 .11 .02 .03 0.17 0.15 0.28 3.11 1.12 3.72 

99 15 equal yes 2 2 .19 .04 .07 0.45 0.10 0.25 11.65 0.15 5.20 

33 5 mixed yes 2 2 .06 .01 .01 0.59 0.25 0.26 5.59 1.43 2.83 

45 5 mixed yes 2 2 .07 .01 .01 0.78 0.21 0.36 12.81 1.39 4.65 

66 10 mixed yes 2 2 .11 .02 .03 0.59 0.20 0.41 13.34 0.91 5.27 

99 15 mixed yes 2 2 .19 .04 .08 0.52 0.12 0.25 13.67 0.78 4.96 

33 5 equal yes 2 1 .05 .01 .01 0.29 0.16 0.22 2.36 0.79 2.17 

45 5 equal yes 2 1 .06 .01 .01 0.22 0.13 0.21 22.10 1.28 13.67 

66 10 equal yes 2 1 .12 .04 .04 0.56 0.12 0.37 11.70 0.93 5.02 

99 15 equal yes 2 1 .25 .10 .14 0.15 0.11 0.10 1.17 0.78 3.54 

33 5 mixed no 2 2 .06 .01 .01 3.67 0.32 0.31 42.21 1.75 2.28 

45 5 mixed no 2 2 .06 .01 .02 0.28 0.18 0.36 4.79 0.94 3.00 

66 10 mixed no 2 2 .12 .02 .03 1.59 0.16 0.23 40.39 1.03 5.92 

99 15 mixed no 2 2 .19 .04 .08 0.29 0.12 0.20 72.96 5.02 36.07 

   Average Across Conditions .11 .03 .04 0.68 0.18 0.30 16.70 1.28 6.62 

Note: Ʌi = Ʌj
 indicate factor loadings are held equal across indicators whereas ɅL2 = ɅL1 indicates that factor loadings are held equal across levels; ζL1 and ζL2 indicate the magni-

tude of the individual- and team-level error variances for the indicators; ML is concurrent estimation of all parameters using maximum likelihood; FS is uncorrected factor score 

path analysis; Croon is Croon’s bias-corrected method; RMSE indicates the root mean-squared error. 
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Convergence 

 

Overall, uncorrected factor score path analysis and Croon’s method returned similar convergence 

rates and both outperformed the maximum likelihood estimator in balanced samples (Table 2). The most 

striking result from the simulation was the influence of unbalanced samples on the convergence rates of all 

the estimators (Table 3). Unbalanced samples had a material impact on both the absolute convergence rates 

and to a much lesser extent on the relative convergence rates across estimators. For instance, when we held 

constant the loadings across indicators and levels and set the error variance of the indicators at 2, with 33 

teams and 5 individuals per team the convergence rates of the estimators were 0.71 for the uncorrected fac-

tor score approach, 0.70 for Croon’s method, and 0.55 for maximum likelihood (fifth condition in Table 2). 

Under those same conditions but with the unbalanced sample, the convergence rates dropped to 0.06 for 

the uncorrected factor score approach, 0.01 for Croon’s method, and 0.01 for maximum likelihood (first 

condition in Table 3). From an absolute perspective, the average convergence rates across conditions that 

included balanced samples were 0.88 for Croon’s and uncorrected factor score path analysis and 0.83 for 

maximum likelihood (Table 2). In unbalanced samples, the average convergence rates plummeted to 0.03 

for Croon’s, 0.11 for uncorrected factor score path analysis, and 0.04 for maximum likelihood (Table 3). 

Consistent with prior literature, sample size was also positively associated with convergence. 

Within the limits of our simulation conditions, increases in either the team- or individual-level sample size 

tended to improve convergence rates. Modulating the loadings across indicators and levels and error vari-

ances across indicators had a comparatively small effect. Across estimators, convergence was minimally 

impacted when loadings varied across indicators. Similarly, there were slight decreases but little material 

and consistent movement in terms of convergence rates when loadings varied across levels or when the er-

ror variances were increased (Tables 2 and 3). 

 

 

Bias 

 

Overall, Croon’s method returned the smallest level of bias for both balanced and unbalanced 

samples. In unbalanced samples the disparity among the methods in terms of bias was most pronounced. 

The average absolute bias across conditions was 0.18 for Croon’s, 0.30 for maximum likelihood, and 0.68 

for uncorrected factor score path analysis. These differences dissipated with balanced samples — the aver-

age absolute bias across balanced conditions was 0.01 for Croon’s, 0.02 for maximum likelihood, and 0.05 

for uncorrected factor score path analysis. 

More generally, the results illustrated a pattern paralleling convergence rates — imbalances in the 

number of individuals per team across teams materially degraded the accuracy of all the estimators. The 

rank order of the estimators in terms of bias was preserved but at times unbalanced samples had a differen-

tial impact on estimator bias. For example, when we held constant the loadings across indicators and levels 

and the error variance of the indicators at 2, with 33 teams and 5 individuals per team the biases of the es-

timators were 0.05 for the uncorrected factor score approach, 0.01 for Croon’s method, and 0.03 for maxi-

mum likelihood (fifth condition in Table 2). Under those same conditions but with the unbalanced sample, 

the biases increased to 0.48 for the uncorrected factor score approach, 0.37 for Croon’s method, and 0.56 

for maximum likelihood (first condition in Table 3).  

Sample size entered into a similar role for Croon’s method and maximum likelihood but not for 

the uncorrected method. As sample size increased, the bias of Croon’s method and maximum likelihood 
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tended to decrease. The performance of both methods improved with but both were subject to occasional 

outlying estimates that introduced noise with finite sample simulations. The uncorrected factor score ap-

proach, however, did not typically return decreasing bias with larger samples. Both results are consistent 

with those previously found in the literature in that Croon’s and concurrent maximum likelihood tend to 

improve with size while the bias introduced through uncorrected factor score methods does not disappear 

with size.  

The variability of loadings across indicators had some influence on the bias of the estimators. 

However, the degree and direction of influence was moderated by estimator and sample balance. For bal-

anced samples, there was little to no difference in bias among estimators when comparing conditions with 

constant loadings across indicators versus those that varied loadings across indicators. In contrast, with un-

balanced samples, mixed loadings were associated with increases and decreases in bias (Table 3). For in-

stance, mixed loadings appeared to consistently amplify bias for uncorrected factor score path analysis 

while sometimes increasing and sometimes decreasing bias for Croon’s method and maximum likelihood. 

Differential factor loadings across levels also had inconsistent influence on bias. Under balanced 

samples, the net impact of cross-level non-invariance was trivial in terms of bias. With unbalanced sam-

ples, bias varied as a function of cross-level non-invariance but bias fluctuated in ways that made it diffi-

cult to see a clear pattern. In part, these results (and the results more generally), were governed by the poor 

convergence rates — when a minor proportion of the samples converge, estimates of bias can be heavily 

influenced by a few extreme parameter estimates. 

 

 

Root Mean-Squared Error 

 

Overall, uncorrected factor score path analysis returned the lowest root mean-squared error in bal-

anced samples (with Croon’s method as a close second) but Croon’s method returned the lowest root 

mean-squared error in unbalanced samples (Tables 2 and 3). To some extent, however, the comparisons of 

the root mean-squared error (and bias) across estimators in unbalanced samples may be skewed by the non-

convergence rates. In many instances, the uncorrected factor score path analysis approach converged but 

Croon’s method and maximum likelihood did not. As a result, many of the estimates under the uncorrected 

factor score path analysis approach represent challenging samples from which to estimate parameter values 

whereas the majority of the estimates under the other two approaches are likely to represent less challeng-

ing samples. 

More generally, the root mean-squared error results followed a pattern similar to that of conver-

gence and bias — it experienced the largest changes when samples were shifted from balanced to unbal-

anced. Returning to the same example condition as before, when we held constant the loadings across indi-

cators and levels and the error variance of the indicators at 2, with 33 teams and 5 individuals per team the 

root mean-squared errors were 0.58 for the uncorrected factor score approach, 0.54 for Croon’s method, 

and 0.84 for maximum likelihood (Table 2). Under those same conditions but with the unbalanced sample, 

the root mean-squared errors increased to 6.46 for the uncorrected factor score approach, 1.47 for Croon’s 

method, and 3.30 for maximum likelihood (Table 3). Likewise, different factor loadings across indicators 

minimally drove down root mean-squared error whereas non-invariance across levels minimally increased 

root mean-squared error (Tables 2 and 3).  
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DISCUSSION  

 

Prior research has acknowledged the foundational and theoretical value of investigating explanato-

ry mechanisms such as macro- and micro-level processes in small to moderate sized studies (e.g., Bodner 

& Bliese, 2017; Croon & van Veldhoven, 2007; Phelps, Kelcey, Liu, & Jones, 2016; Walton, 2014). At the 

same time, methodological research has outlined the broad range of limitations that are likely to be encoun-

tered when estimating the parameters of multilevel models with small to moderate samples (e.g., Croon & 

van Veldhoven, 2007; Hox et al., 2010). The intersection of these considerations has led to the research and 

development of a suite of alternative estimators that attempt to leverage different components of infor-

mation in order to reduce computationally complexity and improve estimation properties.  

In this study, we examined the nature and utility of the Croon-based estimator in the context of 

multilevel structural equation models that integrated top-down and bottom-up processes. The Croon-based 

corrections for (co)variances between macro- and micro-level variables centered on the reliabilities of the 

factors and the reliabilities of the indicator means. Specifically, the correction terms leveraged the factor 

score and factor loading matrices for each factor and the reliabilities of the indicator means to disattenuate 

the covariance between latent variables.  

The simulation results of this study suggested that many of the advantages of Croon-based estima-

tion relative to maximum likelihood and uncorrected factor score path analysis were retained in multilevel 

models that integrate top-down and bottom-up effects. For instance, the results suggested that relative to 

maximum likelihood the Croon-based method returned better convergence rates, marginally smaller levels 

of bias, and smaller root mean-squared error in balanced samples. Moreover, from a relative standpoint, the 

advantages of Croon’s approach appeared largely insensitive to several factors including sample size and 

size and equality of factor loadings. 

The results regarding sample size balance, however, were more qualified. For example, the simu-

lations demonstrated that even though the Croon-based method converges more regularly and with minimal 

bias in balanced samples, the performance of both maximum likelihood and Croon’s method substantially 

deteriorated with unbalanced samples. That is, none of the methods considered performed well in an abso-

lute sense when the data were small and unbalanced. Still, in unbalanced samples, while the differences for 

convergence rates disappeared between Croon’s method and maximum likelihood, their differences in bias 

and root mean-squared error became more pronounced. 

The summation of the results still suggests that Croon-based estimation can be useful and effective 

in small sample multilevel settings. However, the results also introduce caution in its use because the 

method is not immune to many of the known limitations of other estimators. For instance, although the 

Croon-based estimator often outperforms maximum likelihood, in an absolute sense its performance can be 

poor under complicated scenarios such as small unbalanced samples. Further, the results also suggested 

that the choice of estimator(s) may be context dependent. In balanced samples, for example, although the 

uncorrected factor score analysis approach maintained higher levels of bias than did Croon’s method, the 

uncorrected factor score analysis approach retained the smallest root mean-squared error and routinely 

converged at a higher rate.  

Collectively, the results suggest that analyses should often take on a type of syndicate approach 

whereby multiple estimators are applied to a dataset for a given model. Such a strategy may have two use-

ful purposes. First, because each estimator demonstrated significant non-convergence rates across a variety 

of conditions, convergence under at least one estimator is more likely because each excels under different 

conditions. For instance, maximum likelihood tends to be the most versatile when there are large samples; 
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Croon’s method tends to perform the best with small to moderate samples; and the uncorrected factor score 

approach tends to be a type of fallback estimator because it retained the best convergence rates. Moreover, 

prior research has also supported the potential efficacy of this approach — for instance, Kelcey, Cox, and 

Dong (2019) found that on the subgroup of samples for which Croon’s estimator converged but maximum 

likelihood did not, Croon’s estimator still returned parameter estimates with the same minimal bias. That 

is, there is evidence that non-convergence of the maximum likelihood estimator has little bearing on 

whether parameter estimates from Croon’s method will incur bias. 

Second, given the complementary nature of the estimators and their context-specific advantages, a 

potentially useful strategy to investigate is to compare the parameter estimates returned by each estimator. 

That is, the potential use of multiple estimators also introduces the question of the extent to which the simi-

larity of resulting parameter estimates from all three estimators increases the dependability of those esti-

mates. Although the similarity of estimates across estimators does not ensure or bolster their accuracy, their 

similarity might suggest that the estimates are not sensitive to estimation issues. In contrast, finding evi-

dence of material differences among the estimators suggests that one or more of the estimators may have 

encountered estimation issues. Past research in different contexts has also used different amalgamations 

and comparisons of multiple estimators in multilevel models to probe the quality of estimates or the under-

lying assumptions (e.g., Raudenbush & Bryk, 2002). Future research should probe the degree to which cor-

respondences across the estimators might be indicative of proper estimation convergence or minimal bias. 

The results of the study also suggest that additional developments and adjustments to the nature 

and scope of Croon style corrections may be valuable. For instance, our findings suggest that challenging 

estimation conditions arise when we encounter a small, moderate, or even a relatively large sample that is 

unbalanced. Although the convergence performance of Croon’s estimator was comparable to that of maxi-

mum likelihood, alternative approaches may serve to improve such performance. For example, many of the 

estimation issues faced in the unbalanced conditions involved non-convergence of one or more of the 

measurement models. However, some of the non-convergent samples involved the corrected covariance 

matrix exceeding what is mathematically possible. In the former instances, alternative measurement mod-

els or estimation techniques may resolve issues. In these latter instances, alternative estimation approaches 

may be useful or alternative approaches to the correction terms such as smoothing to prevent non-positive 

definite covariance matrices may considerably improve the convergence, bias and variance of Croon-based 

estimation. Similarly, our use of the harmonic mean for the individual-level sample sizes (ñ1) in unbal-

anced samples may have contributed to estimation issues. Drawing on alternative approaches — such as 

smoothing or weighted versions of the multivariate reliability matrix with weights proportional to the team-

specific individual-level sample size — may prove more effective. Additional research on the relative roles 

of the team- and individual-level sample sizes or how their interaction might bolster or undermine the per-

formance of Croon-based estimation may prove useful in selecting estimators or in delineating how 

planned studies might allocate resources or sample size across levels of the hierarchy.  
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