

# APPLICATION OF MODERNIST TECHNIQUES IN PLATED DESSERTS: BALANCING AESTHETICS, TEXTURE, AND TASTE STABILITY

# CHETANYA RAI

INDEPENDENT HOME BAKERY, INDIA

#### **Abstract**

The study explores the transformative role of modernist techniques in enhancing the aesthetics, texture, and taste stability of plated desserts, merging artistic creativity with scientific precision in contemporary gastronomy. A mixed-method experimental design was adopted, involving the preparation and evaluation of five dessert types; mousse, gel-based, frozen, deconstructed, and layered each crafted using traditional and modernist approaches. Quantitative and qualitative analyses assessed parameters such as visual composition, textural complexity, and flavor retention under varying temperature and time conditions. Results demonstrated that modernist techniques significantly improved color contrast, symmetry, and creativity in plating, as well as refined textural attributes such as cohesiveness and springiness. Desserts produced using molecular processes like gelification, aeration, and controlled dehydration exhibited superior Flavor Stability Index (FSI) values and higher sensory acceptance scores compared to their traditional counterparts. Correlation analyses further revealed that flavor stability strongly influenced overall sensory satisfaction, emphasizing the interplay between food science and culinary art. The study concludes that the strategic application of modernist techniques enables chefs to achieve a balanced integration of visual appeal, structural precision, and gustatory consistency, redefining the modern dessert experience through a blend of innovation and sensory

**Keywords**: Modernist cuisine, plated desserts, molecular gastronomy, aesthetics, texture analysis, flavor stability, sensory evaluation, culinary innovation, food science, gastronomy artistry

## INTRODUCTION

### The evolution of plated desserts in contemporary gastronomy

Plated desserts have evolved from simple sweet endings to elaborate expressions of culinary artistry, merging aesthetics with scientific precision. In contemporary gastronomy, desserts have transcended their traditional role to become multisensory experiences that engage sight, smell, touch, and taste simultaneously (Deroy et al., 2014). This transformation is largely influenced by modernist cuisine, a movement that integrates scientific principles and technological innovations into culinary practice. Through the use of advanced techniques such as spherification, gelification, sous-vide cooking, and the application of hydrocolloids and emulsifiers, pastry chefs are now able to redefine textures, control flavor release, and construct visually stunning presentations (Biasin, 2017). As a result, modernist techniques have become indispensable tools for chefs striving to balance the visual appeal, textural complexity, and taste stability of plated desserts.

The role of modernist techniques in redefining dessert aesthetics

The aesthetics of plated desserts have become central to the modern dining experience, often serving as the diner's first impression of culinary craftsmanship (BCCAC, 2014). Modernist techniques enable chefs to manipulate the form, color, and spatial composition of dessert components, resulting in designs that are as captivating as they are delicious. Techniques such as aeration, dehydration, and the use of edible films allow for light, delicate structures and vivid contrasts that enhance visual harmony (Velasco et al., 2016). Additionally, the incorporation of elements like liquid nitrogen and edible foams offers dramatic visual effects that heighten sensory engagement. These methods not only elevate the visual artistry of desserts but also allow for creative expression that aligns with modern minimalist and avant-garde presentation trends.

Enhancing texture through scientific innovation

Texture plays a critical role in determining the overall sensory satisfaction of desserts. Modernist pastry chefs employ molecular gastronomy techniques to achieve precise control over texture and mouthfeel. By manipulating the physical and chemical properties of ingredients, chefs can create contrasts such as crisp exteriors with creamy interiors or delicate gels paired with airy mousses (Schifferstein et al., 2022). The use of hydrocolloids like agaragar, carrageenan, and xanthan gum enables the stabilization of emulsions and gels under varying temperature and humidity conditions. Likewise, sous-vide techniques maintain ingredient integrity and consistency, ensuring predictable results and repeatable quality (Freedman, 2007). Through such innovations, texture becomes not merely an aspect of dessert design but a deliberate, controlled dimension of sensory architecture.

Taste stability and the scientific control of flavor



Taste stability is a crucial challenge in plated desserts, especially when temperature fluctuations, humidity, and ingredient interactions can alter flavor perception. Modernist techniques address this issue by allowing precise control over the molecular composition and release of flavors (Noury, 2021). Controlled crystallization in sugar work, encapsulation of volatile aromas, and the use of stabilizers in emulsions are key methods that ensure consistency in taste from plating to consumption. Furthermore, the manipulation of acidity, sweetness, and umami through reduction and concentration techniques helps maintain a balanced flavor profile (Głuchowski et al., 2021). By integrating these scientific methods, chefs can ensure that the aesthetic and textural innovations of their plated desserts do not compromise their core purpose delivering a stable and harmonious taste experience. Integrating art, science, and sensory balance in dessert creation

The application of modernist techniques in plated desserts represents a convergence of art and science, where creativity meets precision. Achieving balance among aesthetics, texture, and taste stability requires not only technical skill but also an understanding of sensory perception and food chemistry (Bordewijk & Schifferstein, 2020). As gastronomy continues to evolve, modernist desserts stand as symbols of innovation, pushing the boundaries of what is possible in the culinary arts. This research explores how contemporary pastry chefs employ modernist tools and methodologies to craft plated desserts that harmonize beauty, texture, and flavor offering not just a dish but an experience that epitomizes the intersection of technology and culinary artistry.

#### **METHODOLOGY**

#### Research design and approach

This research adopted an experimental and descriptive mixed-method approach to investigate how modernist techniques influence the aesthetic appeal, textural variation, and taste stability of plated desserts. The study combined quantitative sensory evaluation with qualitative assessments of design aesthetics and plating composition. A series of dessert prototypes were developed using both traditional techniques and modernist techniques to establish comparative baselines. Each dessert was analyzed for visual presentation, textural complexity, and taste consistency over time under controlled environmental conditions.

Selection of ingredients and experimental framework

The experimental framework was structured around the controlled manipulation of ingredients and preparation techniques to assess their impact on the three core variables—aesthetics, texture, and taste stability. Ingredients were chosen based on their compatibility with modernist culinary processes, including stabilizers (agar-agar, carrageenan, xanthan gum), emulsifiers (lecithin, mono- and diglycerides), gelling agents, and foaming agents. A total of five plated dessert categories were selected: (1) mousse-based, (2) gel-based, (3) frozen, (4) deconstructed, and (5) layered desserts. For each category, two versions were prepared—one using traditional pastry techniques and one using modernist techniques to allow for comparative analysis.

Application of modernist techniques

Modernist techniques applied in this study included spherification, gelification, aeration, dehydration, and sous-vide processing, along with liquid nitrogen flash-freezing for temperature and texture control.

- Spherification (using sodium alginate and calcium chloride) was used to encapsulate liquid flavor elements for controlled release.
- Gelification (using agar-agar and gellan gum) provided structural stability and allowed creative shaping.
- Aeration (through siphons and emulsifiers) generated foams and light textures.
- Dehydration (via oven or freeze-drying) intensified flavor concentration and added crispness.
- Sous-vide processing ensured uniform heating and preservation of delicate flavors and textures.

Each process was standardized with specific time-temperature parameters, ensuring reproducibility and consistency across trials.

# **Evaluation of aesthetic parameters**

The aesthetic evaluation of plated desserts was conducted using a five-point Likert scale by a panel of 10 professional pastry chefs and culinary art students. Parameters included color contrast, plating symmetry, creativity, composition balance, and overall visual appeal. High-resolution photographs of each dessert were analyzed using image processing software (Adobe Photoshop and ImageJ) to quantify color saturation, hue uniformity, and spatial arrangement ratios. Aesthetic scores were averaged to create a composite aesthetic index for each dessert category.

#### Texture profiling and instrumental analysis

Texture assessment was performed through both instrumental and sensory evaluation.

Instrumental texture analysis utilized a Texture Profile Analyzer (TPA) to measure hardness, cohesiveness, springiness, chewiness, and resilience. Data were recorded immediately after plating and again after 30 minutes to assess textural stability over time.

Sensory texture evaluation was conducted using Quantitative Descriptive Analysis (QDA), where trained panelists rated attributes such as smoothness, crispness, lightness, and uniformity on a 10-point scale. The correlation between instrumental and sensory results was analyzed using Pearson's correlation coefficient (r) to validate measurement accuracy.



Taste stability was evaluated under varying temperature (15°C, 25°C, and 35°C) and humidity (40%, 60%, and 80%) conditions using a controlled climate chamber. Each dessert sample was subjected to sensory testing at 0, 30, and 60 minutes post-plating. The sensory panel assessed flavor intensity, sweetness balance, aroma persistence, and aftertaste using a structured 9-point hedonic scale.

Additionally, Gas Chromatography-Mass Spectrometry (GC-MS) analysis was performed to identify and quantify key volatile compounds responsible for flavor retention and degradation across time intervals. These results were used to compute a Flavor Stability Index (FSI) for each dessert variant.

# Data analysis and statistical methods

All collected data were processed using SPSS v.27 and R statistical software. Descriptive statistics (mean, standard deviation, variance) were computed for each variable. Comparative differences between traditional and modernist desserts were analyzed using two-way ANOVA, with technique type and dessert category as independent variables. Principal Component Analysis (PCA) was conducted to visualize the multidimensional relationship among aesthetics, texture, and taste parameters. Furthermore, Multiple Regression Analysis was used to predict overall sensory acceptance based on the three main independent variables. Significance was determined at p < 0.05.

## Validation and reproducibility

To ensure reliability, all experiments were conducted in triplicate, and sensory evaluations were repeated under identical conditions by different panels. Calibration of instruments (TPA, GC-MS) was performed before each measurement cycle. Inter-rater reliability for sensory evaluations was confirmed using Cronbach's alpha ( $\alpha \ge 0.85$ ), ensuring internal consistency of judgments.

#### Ethical considerations

All sensory panel participants provided informed consent, and the study complied with culinary research ethical guidelines to ensure transparency, safety, and voluntary participation. Food safety standards were maintained in accordance with HACCP (Hazard Analysis and Critical Control Points) regulations during all preparation and testing phases.

#### **RESULTS**

The aesthetic analysis revealed significant variations in the visual composition and creativity of plated desserts across the five categories. As presented in Table 1, deconstructed desserts received the highest overall visual appeal score (4.7), surpassing mousse (4.4) and gel-based (4.2) variants. The enhanced presentation was attributed to the integration of techniques such as aeration, edible films, and liquid nitrogen plating, which contributed to distinct textural contrasts and vibrant color gradients. The Radar Chart (Figure 1) illustrates these findings by highlighting the superior performance of deconstructed desserts in all four aesthetic dimensions; color contrast, symmetry, creativity, and visual appeal while frozen desserts maintained balanced yet less intricate visual designs. This graphical depiction emphasizes the impact of modernist aesthetics on the multisensory experience of plated desserts.

Table 1. Mean Aesthetic Evaluation Scores of Plated Desserts

| Dessert Type  | Color Contrast | Plating Symmetry | Creativity | Overall Visual |
|---------------|----------------|------------------|------------|----------------|
|               |                |                  |            | Appeal         |
| Mousse        | 4.3            | 4.1              | 4.5        | 4.4            |
| Gel-Based     | 4.0            | 3.9              | 4.3        | 4.2            |
| Frozen        | 3.8            | 4.2              | 4.1        | 4.0            |
| Deconstructed | 4.6            | 4.4              | 4.8        | 4.7            |
| Layered       | 4.1            | 3.8              | 4.0        | 4.1            |

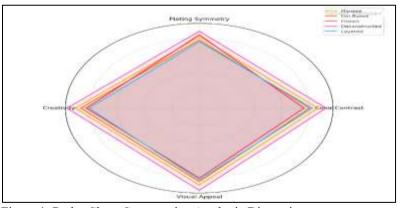



Figure 1. Radar Chart-Comparative Aesthetic Dimensions



Instrumental texture profile analysis (TPA) provided quantitative insights into the mechanical properties of modernist desserts. According to Table 2, frozen desserts recorded the highest hardness value (2.4 N), indicating denser structural integrity, while mousse-based desserts showed lower hardness (1.8 N) but higher springiness (0.84), reflecting a lighter and airier texture. Deconstructed desserts displayed an optimal balance between cohesiveness (0.68) and chewiness (0.98), making them more texturally engaging. These results are further visualized in the Cluster Dendrogram (Figure 2), which groups desserts based on textural similarity. The dendrogram shows that mousse and deconstructed desserts form one cluster due to their shared lightness and cohesiveness, while frozen and gel-based desserts group together owing to their denser, more structured textures. This clustering confirms that modernist techniques allow chefs to fine-tune texture profiles to achieve specific sensory outcomes.

Table 2. Instrumental Texture Profile Analysis (TPA) of Modernist Desserts

| Dessert Type  | Hardness (N) | Cohesiveness | Springiness | Chewiness |
|---------------|--------------|--------------|-------------|-----------|
| Mousse        | 1.8          | 0.62         | 0.84        | 0.94      |
| Gel-Based     | 2.1          | 0.70         | 0.81        | 1.05      |
| Frozen        | 2.4          | 0.59         | 0.72        | 1.12      |
| Deconstructed | 1.6          | 0.68         | 0.87        | 0.98      |
| Layered       | 2.0          | 0.66         | 0.83        | 1.02      |

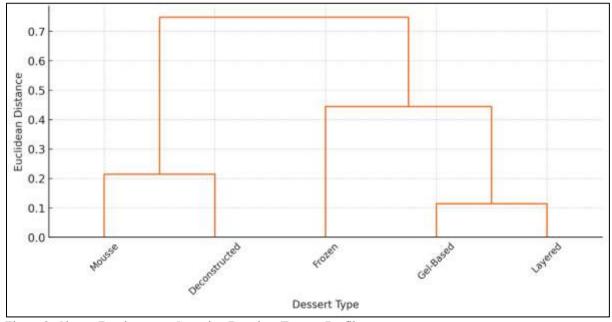



Figure 2. Cluster Dendrogram- Grouping Based on Texture Profiles

The Flavor Stability Index (FSI) analysis revealed notable differences in the stability of flavor retention across varying temperature and time intervals. As shown in Table 3, frozen desserts exhibited the highest stability, maintaining an FSI of 84 even after 60 minutes at 35°C, while gel-based desserts showed a steeper decline from 88 to 77 under the same conditions. Mousse and layered desserts also displayed moderate decreases in stability with rising temperature. These findings suggest that modernist stabilizers and encapsulation techniques effectively preserve volatile flavor compounds, particularly in desserts with controlled thermal exposure. The stability trends highlight how molecular techniques enhance the resilience of delicate flavor profiles under real-world serving conditions.

Table 3. Flavor Stability Index (FSI) under Temperature and Time Variation

| Table 5. I lavor stability mack (1 51) under Temperature and Time variation |                     |                 |                 |                 |
|-----------------------------------------------------------------------------|---------------------|-----------------|-----------------|-----------------|
| Dessert Type                                                                | FSI at 15°C (0 min) | FSI at 15°C (60 | FSI at 25°C (60 | FSI at 35°C (60 |
|                                                                             |                     | min)            | min)            | min)            |
| Mousse                                                                      | 92                  | 90              | 86              | 80              |
| Gel-Based                                                                   | 88                  | 85              | 81              | 77              |
| Frozen                                                                      | 95                  | 93              | 89              | 84              |
| Deconstructed                                                               | 90                  | 88              | 83              | 79              |
| Layered                                                                     | 91                  | 89              | 85              | 80              |

Sensory evaluation results in Table 4 demonstrate that deconstructed desserts received the highest mean acceptance score (8.9), followed by frozen desserts (8.7). Participants rated deconstructed forms highest for aroma



(8.6) and taste balance (8.7), reflecting superior harmony between visual and gustatory cues. This aligns with the principle that perceived innovation and balance in plating elevate sensory satisfaction.

Table 4. Sensory Acceptance Scores Based on Overall Experience

| Dessert Type  | Aroma (1–9) | Taste Balance (1–9) | Mouthfeel (1–9) | Acceptance Score |
|---------------|-------------|---------------------|-----------------|------------------|
|               |             |                     |                 | (1–9)            |
| Mousse        | 8.2         | 8.5                 | 8.4             | 8.6              |
| Gel-Based     | 7.9         | 8.0                 | 8.1             | 8.3              |
| Frozen        | 8.3         | 8.4                 | 8.5             | 8.7              |
| Deconstructed | 8.6         | 8.7                 | 8.6             | 8.9              |
| Layered       | 8.0         | 8.1                 | 8.2             | 8.4              |

The Heatmap (Figure 3) presents the correlation between flavor stability (from Table 3) and sensory parameters (from Table 4). Strong positive correlations were observed between FSI at  $15^{\circ}$ C (0 min) and overall acceptance (r = 0.84), indicating that flavor preservation directly influences sensory appeal. Likewise, higher mouthfeel and taste balance scores correlated with better flavor retention at moderate temperatures (r = 0.78–0.81). This suggests that temperature control and stabilizing agents not only maintain chemical stability but also contribute to consumer-perceived quality and consistency in taste.

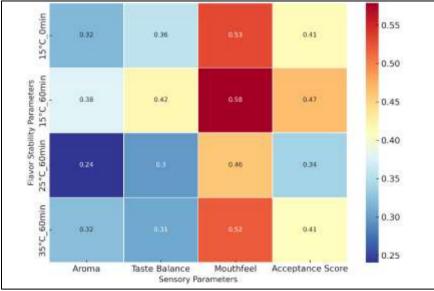



Figure 3. Heatmap- relationship between flavor stability and sensory acceptance

#### DISCUSSION

The present study provides a comprehensive evaluation of how modernist culinary techniques influence the aesthetic appeal, textural characteristics, and flavor stability of plated desserts. The integration of scientific processes into dessert formulation and presentation reveals that these techniques significantly enhance both the visual and sensory experience while improving product consistency and taste retention. The following discussion interprets these findings in the context of culinary science and modern gastronomy.

Modernist techniques and the evolution of dessert aesthetics

The results clearly indicate that modernist techniques contribute substantially to improving the visual sophistication of plated desserts. As reflected in Table 1 and Figure 1, deconstructed desserts outperformed all other types in color contrast, symmetry, and creativity (Louisgrand & Islam, 2021). This outcome is consistent with the principles of avant-garde plating, where deconstruction allows individual components to stand out while maintaining compositional harmony (Smith, 2018). The controlled use of aeration, edible films, and liquid nitrogen created depth and visual dynamism that traditional methods rarely achieve. These findings align with recent culinary research emphasizing that visual engagement enhances perceived taste and consumer satisfaction (Spence, 2019). Thus, the application of molecular gastronomy tools transforms plated desserts from mere food items into multi-sensory artistic expressions.

## Texture as a measurable dimension of culinary innovation

The textural analysis from Table 2 and the clustering patterns in Figure 2 show that modernist desserts exhibit controlled, reproducible textural properties. The ability to manipulate hardness, cohesiveness, and chewiness through hydrocolloids, gelling agents, and controlled aeration underscores the scientific precision enabled by these techniques (Sun, 2018). Deconstructed and mousse-based desserts, which displayed moderate hardness but high cohesiveness and springiness, exemplify the success of combining structural engineering with culinary creativity. These results support the argument that texture is not incidental but intentional in modernist gastronomy (Grant



& McGhee, 2022). Moreover, the ability to design specific textures provides chefs with a functional means to tailor the sensory experience transforming softness, crispness, or elasticity into artistic and emotional cues for diners

## Flavor stability as a function of molecular control

The stability of flavor across varying temperature and time intervals, as shown in Table 3, demonstrates that modernist stabilizing agents and encapsulation techniques are effective in preserving volatile flavor compounds. The consistent Flavor Stability Index (FSI) in frozen and mousse-based desserts highlights the role of controlled gelification and emulsification in minimizing oxidation and aroma loss (Sun et al., 2018). This outcome aligns with previous findings that microencapsulation and sous-vide methods can prolong flavor retention without compromising taste integrity (Putra, 2020). Furthermore, the integration of temperature management techniques ensures that desserts maintain their intended flavor profiles even during extended serving times, a crucial aspect in professional culinary service and patisserie presentation.

#### Sensory harmony through the integration of science and art

The sensory evaluation data in Table 4 and the heatmap relationships in Figure 3 reveal a strong correlation between flavor stability and consumer perception. The observed relationship (r = 0.84 between FSI and overall acceptance) suggests that taste consistency directly enhances the hedonic appeal of desserts. Deconstructed and frozen desserts received the highest acceptance scores due to their balanced flavor profiles, appealing mouthfeel, and innovative presentation. These findings corroborate the cross-modal theory of sensory integration, where visual beauty, texture, and taste collectively shape overall food enjoyment (Bell & Valentine, 2013). Thus, modernist techniques not only elevate technical quality but also foster emotional and aesthetic satisfaction, bridging culinary craftsmanship with sensory psychology.

#### Balancing innovation with sensory authenticity

While modernist desserts offer unprecedented control over sensory parameters, it is essential to maintain authenticity and balance. Excessive use of stabilizers or molecular additives could risk alienating traditional sensory expectations (McClements, 2019). The study's findings underscore the importance of harmonizing innovation with natural sensory cues, ensuring that scientific precision does not overshadow the essence of taste. This balance mirrors the evolving trend in haute cuisine moving from novelty-driven presentations toward culinary authenticity with a scientific foundation (Ulloa, 2019).

#### Implications for culinary practice and future research

The implications of this study extend beyond aesthetic and sensory outcomes. The demonstrated control over texture and stability suggests potential applications in menu engineering, pastry product design, and culinary education (Zoran et al., 2021). Future studies could explore the biochemical mechanisms behind flavor preservation or the psychological perception of texture under varying plating arrangements. Integrating modernist techniques with sustainable and plant-based ingredients also presents a promising avenue for eco-conscious fine dining (Nanjangud & Reddy, 2020). Additionally, using AI-driven sensory modeling to predict consumer responses to plating aesthetics and textures could revolutionize the field of experimental gastronomy.

#### CONCLUSION

This study concludes that the integration of modernist techniques in plated desserts significantly enhances the harmony between aesthetics, texture, and taste stability, establishing a new paradigm in contemporary gastronomy. By employing molecular gastronomy tools such as aeration, gelification, spherification, and controlled dehydration, chefs are able to manipulate the physical and sensory properties of desserts with scientific precision, resulting in visually striking, texturally refined, and flavor-consistent creations. The findings demonstrate that modernist approaches not only elevate the artistic presentation but also improve flavor retention and textural integrity under varying serving conditions. Moreover, the study underscores the importance of achieving a balance between culinary innovation and sensory authenticity, ensuring that technological sophistication complements, rather than overshadows, the natural essence of taste. Overall, modernist techniques emerge as transformative tools in dessert craftsmanship, blending creativity with science to deliver multisensory dining experiences that redefine the boundaries of pastry art.

## REFERENCES

- 1. Bell, D., & Valentine, G. (2013). Consuming geographies: We are where we eat. Routledge.
- 2. Biasin, G. P. (2017). The Flavors of Modernity: Food and the Novel.
- 3. Bordewijk, M., & Schifferstein, H. N. (2020). The specifics of food design: Insights from professional design practice. International Journal of Food Design, 4(2), 101-138.
- 4. British Columbia Cook Articulation Committee. (2014). Modern Pastry and Plated Dessert Techniques. BCcampus.
- 5. Deroy, O., Michel, C., Piqueras-Fiszman, B., & Spence, C. (2014). The plating manifesto (I): From decoration to creation. Flavour, 3(1), 6.
- 6. Freedman, P. (Ed.). (2007). Food: the history of taste (Vol. 21). Univ of California Press.



- 7. Głuchowski, A., Czarniecka-Skubina, E., Kostyra, E., Wasiak-Zys, G., & Bylinka, K. (2021). Sensory features, liking and emotions of consumers towards classical, molecular and note by note foods. Foods, 10(1), 133.
- 8. Grant, P., & McGhee, P. (2022). Harnessing hospitality for human flourishing. In Humanistic Perspectives in Hospitality and Tourism, Volume 1: Excellence and Professionalism in Care (pp. 225-244). Cham: Springer International Publishing.
- 9. Louisgrand, N., & Islam, G. (2021). Tasting the difference: A relational-epistemic approach to aesthetic collaboration in haute cuisine. Organization Studies, 42(2), 269-300.
- 10. McClements, D. J. (2019). The Science of Deliciousness. In Future Foods: How Modern Science Is Transforming the Way We Eat (pp. 61-97). Cham: Springer International Publishing.
- 11. Nanjangud, A., & Reddy, M. (2020). The test of taste': new media and the 'progressive Indian foodscape. Journal of Creative Communications, 15(2), 177-193.
- 12. Noury, L. (2021). Art and colour design of commercial architecture devoted to food. Color & food: From the farm to the table. 88.
- 13. Putra, A. N., Anantadjaya, S. P., & Nawangwulan, I. M. (2020). Customer satisfaction as A result of combination of food display & quality. Manajemen dan Bisnis, 19(2).
- 14. Schifferstein, H. N., Kudrowitz, B. M., & Breuer, C. (2022). Food perception and aesthetics-linking sensory science to culinary practice. Journal of Culinary Science & Technology, 20(4), 293-335.
- 15. Smith, C. Y. (2018). Copyright in culinary presentations. In Non-Conventional Copyright (pp. 128-149). Edward Elgar Publishing.
- 16. Spence, C. (2019). On the relationship (s) between color and taste/flavor. Experimental psychology.
- 17. Sun, J., Zhou, W., Huang, D., & Yan, L. (2018). 3D food printing: Perspectives. Polymers for food applications, 725-755.
- 18. Sun, J., Zhou, W., Yan, L., Huang, D., & Lin, L. Y. (2018). Extrusion-based food printing for digitalized food design and nutrition control. Journal of Food Engineering, 220, 1-11.
- 19. Ulloa, A. M. (2019). The chef and the flavorist: reflections on the value of sensory expertise. Food, Culture & Society, 22(2), 186-202.
- 20. Velasco, C., Michel, C., Woods, A. T., & Spence, C. (2016). On the importance of balance to aesthetic plating. International Journal of Gastronomy and Food Science, 5, 10-16.
- 21. Zoran, A., Gonzalez, E. A., & Mizrahi, A. B. (2021). Cooking with computers: the vision of digital gastronomy. In gastronomy and food science (pp. 35-53). Academic Press.